


Ver. 1.2

### **■**Pin Functional Schematic and Assignment

(Top View)



| Pin No. | Pin Name | Description       |
|---------|----------|-------------------|
| 1       | GND      | Ground            |
| 2       | Vcont2   | Voltage Control 2 |
| 3       | RF2(Rx)  | Receive Port      |
| 4       | RF1(Tx)  | Transmit Port     |
| 5       | Vcont1   | Voltage Control 1 |
| 6       | RFC(Ant) | Antenna Port      |

#### **■** Features

• WLAN 802.11a/b/g/n/ac Applications

• Low Insertion Loss: 0.4dB@2.4 ~ 2.5GHz

0.5dB@ $4.9 \sim 6.0$ GHz

• High Isolation: 30dB@2.4 ~ 2.5GHz 33dB@4.9 ~ 6.0GHz

• DFN 1.5mm×1.5mm 6 Lead Green Package

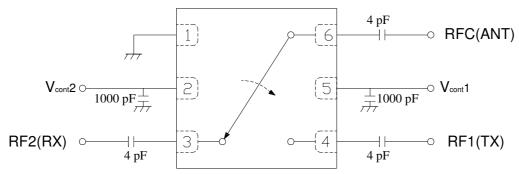
• 1KV ESD Capability (HBM)

• Low Cost and Good Reliability Performance

### **■** General Description

GW2163-A is a SPDT switch in a DFN 1.5mm×1.5mm 6 lead plastic package. GW2163-A features low insertion loss, high isolation and positive voltage operation with 2 controls. Typical applications are for IEEE WLAN 802.11 a/b/g/n/ac system or systems with operating frequency at 2.4GHz and 6.0GHz dual band for transmit and receive diversity.

**■** Electrical Specifications at 25°C with (0, +3V) Control Voltages, 4pF Capacitor


| Parameter                                                                             | Test Conditions                                                        | Min. | Тур.                   | Max. | Unit |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|------------------------|------|------|
| Instantian I am                                                                       | 2.4 - 2.5 GHz                                                          | -    | 0.4                    | 0.6  | dB   |
| Insertion Loss                                                                        | 4.9 – 6.0 GHz                                                          | -    | 0.5                    | 0.75 |      |
| Isolation                                                                             | 2.4 - 2.5 GHz                                                          | 28   | 31                     | -    | 4D   |
| (TX to Ant, RX to Ant)                                                                | 4.9 – 6.0 GHz                                                          | 30   | 33                     | -    | dB   |
| Isolation                                                                             | 2.4 - 2.5 GHz                                                          | -    | 30                     | -    | dB   |
| (Tx to Rx)                                                                            | 4.9 – 6.0 GHz                                                          | -    | 32                     | -    | иь   |
| Inmut/Outmut Datum Loca                                                               | 2.4 - 2.5 GHz                                                          | -    | 20                     | -    | dB   |
| Input/Output Return Loss                                                              | 4.9 – 6.0 GHz                                                          | -    | 15                     | -    | иь   |
| James Design for 1 dD communication                                                   | 2.4 - 2.5 GHz                                                          | -    | +32                    | -    | 4D   |
| Input Power for 1 dB compression                                                      | 4.9 – 6.0 GHz                                                          | -    | +30                    | -    | dBm  |
| Second Harmonics                                                                      | $2.5 \text{ GHz}, P_{IN} = 20 \text{dBm}$                              | -    | -70                    | -    | dBc  |
| Third Harmonics                                                                       | $2.5 \text{ GHz}, P_{IN} = 20 \text{dBm}$                              | -    | -70                    | -    | dBc  |
| Switching Rise Time<br>Switching Fall Time<br>Switching On Time<br>Switching Off Time | 10/90% RF<br>90/10% RF<br>50% CTL to 10/90% RF<br>50% CTL to 90/10% RF | -    | 80<br>60<br>120<br>120 | -    | ns   |
| Control Current                                                                       | Input Power 0dBm                                                       | -    | 8                      | -    | μΑ   |

Notes: All measurements are made in  $50\Omega$  system, unless otherwise specified.



Ver. 1.2

### **■** Evaluation Circuit



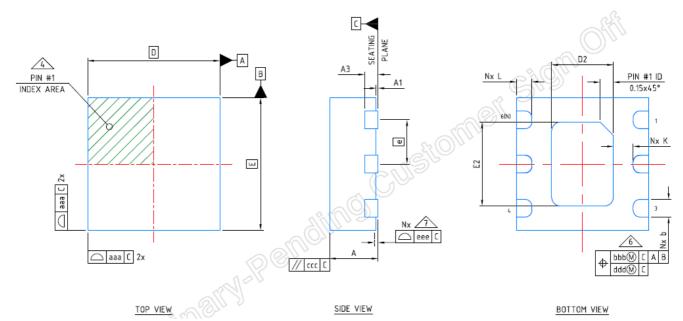
#### **■ Truth Table**

| Vcont1 | Vcont2 | RFC(ANT)-RF1(TX) | RFC(ANT)-RF2(RX) |
|--------|--------|------------------|------------------|
| High   | Low    | OFF              | ON               |
| High   |        | ( Isolation)     | (Insertion Loss) |
| Low    | High   | ON               | OFF              |
|        |        | (Insertion Loss) | (Isolation)      |

## **■** Recommended Operating Conditions

| Parameter              | MIN. | MAX. | Unit |
|------------------------|------|------|------|
| Control Voltage (High) | +1.6 | +3.5 | V    |
| Control Voltage (Low)  | 0    | +0.4 | V    |
| Operating frequency    | 0.1  | 6.0  | GHz  |

### **■** Absolute Maximum Ratings

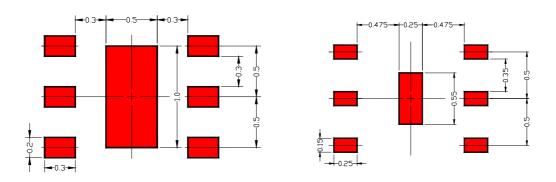

| Parameter              | Absolute<br>Maximum | Unit                                                                               |
|------------------------|---------------------|------------------------------------------------------------------------------------|
| Switch Control Voltage | +3.5                | V                                                                                  |
| Max input Power        | 32                  | dBm                                                                                |
| Operating Temperature  | -40 to +85          | $^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| Storage Temperature    | -40 to +125         | $^{\circ}$                                                                         |

Operational exceeding any one of these limits may cause permanent damage to this device.



Ver. 1.2

## **■ DFN 1.5mm×1.5mm 6Lead Package Dimensions** (Unit: mm)




Dimension Table Thickness UT Symbol NOTE MINIMUM NOMINAL MAXIMUM 0.51 0.55 0.60 Α Α1 0.00 0.02 0.05 ΑЗ 0.15 Ref 0.20 0.25 Ь 0.15 6 D 1.50 BSC Ε 1.50 BSC е 0.50 BSC D2 0.55 0.70 0.80 0.80 0.95 1.05 E2 ---Κ 0.15 0.125 0.175 0.225 L aaa 0.05 0.10 bbb CCC 0.10 0.05 ddd eee 0.08 N 6 3 NE 3 5 1, 2 NOTES LF PART NO. 443896 LF DWG. NO. CARSEM-HDS-043 Rev. A



Ver. 1.2

## ■ Mounting Pad and Solder Mask Layout Dimensions (Unit: mm)



**Mounting Pad** 

**Solder Pad** 

Stainless thickness: 0.1mm~0.08mm

Remark The mounting pad layouts in this document are for reference only.

#### **■ Recommended Soldering Conditions**

This product should be mounted and soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

| Soldering Method | Soldering Conditions                           | Rating             |
|------------------|------------------------------------------------|--------------------|
|                  | Peak temperature (package surface temperature) | 260 °C or below    |
|                  | Time at peak temperature                       | 10 seconds or less |
| Infrared Reflow  | Time at temperature of 200 °C or higher        | 60 seconds or less |
| illitated hellow | Preheating time at 120 to 180 ℃                | 120±30 seconds     |
|                  | Maximum number of reflow processes             | 3 times            |
|                  | Maximum chlorine content of rosin flux (%mass) | 0.2%(Wt.) or below |
|                  | Peak temperature (molten solder temperature)   | 260 °C or below    |
|                  | Time at peak temperature                       | 10 seconds or less |
| Waya Saldarina   | Preheating temperature (package surface        | 120 °C or below    |
| Wave Soldering   | temperature)                                   | 1 times            |
|                  | Maximum number of flow processes               | 0.2%(Wt.) or below |
|                  | Maximum chlorine content of rosin flux (%mass) |                    |
|                  | Peak temperature (terminal temperature)        | 350 ℃ or below     |
| Partial Heating  | Soldering time (per side of device)            | 3 seconds or less  |
|                  | Maximum chlorine content of rosin flux (%mass) | 0.2%(Wt.) or below |

Caution: Do not use different soldering methods together (except for partial heating).