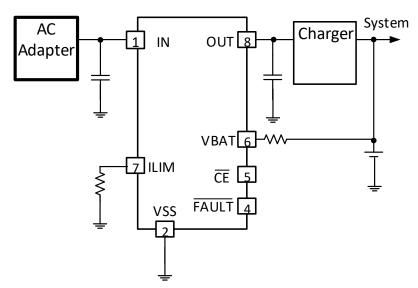
## WP1111 Overvoltage and Overcurrent Protection IC and

## Li+ Charger Front-End Protection IC

#### **General Description**

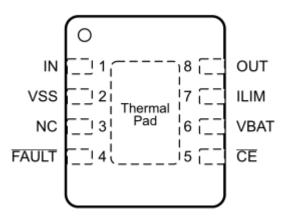
WP1111 provides protection to Li-ion batteries from failures of the charging circuit. The IC continuously monitors the input voltage, the input current, and the battery voltage. In case of an input overvoltage condition, the IC immediately removes power from the charging circuit by turning off an internal switch. In the case of an overcurrent condition, it limits the system current at the threshold value, and if the overcurrent persists, switches the pass element OFF after a blanking period. Additionally, the IC also monitors its own die temperature and switches off if it becomes too hot.


The input overcurrent threshold is userprogrammable.

#### Features

- Input Overvoltage, With Rapid Response in < 1µs</li>
- User-Programmable Overcurrent With Current Limiting
- Battery Overvoltage
- 30V Maximum Input Voltage
- Support up to 1.5A Input Current
- Robust Against False Triggering Due to Current Transients
- Thermal Shutdown
- Enable Input
- Status Indication Fault Condition
- Available in Space-Saving Small 8-Pin 2x2 DFN Packages

#### Applications


- Smart Phones
- Tablets
- Handheld Devices



## **Typical Application**



## **Pin Configuration**



## **Pin Description**

| Pin<br>Name    | Pin<br>Number | I/O | Description                                                                                                                                                                                                                                                                                                                                             |
|----------------|---------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ĈĒ             | 5             | I   | Chip enable input. Active low. When $\overline{CE}$ = High, the input FET is off. Internally pulled down.                                                                                                                                                                                                                                               |
| FAULT          | 4             | 0   | Open-drain output, device status. $\overline{FAULT}$ = Low indicates that the input FET Q1 has been turned off due to input overvoltage, input overcurrent, battery overvoltage, or thermal shutdown.                                                                                                                                                   |
| ILIM           | 7             | I/O | Input overcurrent threshold programming. Connect a resistor to VSS to set the overcurrent threshold.                                                                                                                                                                                                                                                    |
| IN             | 1             | I   | Input power, connect to external DC supply. Connect external $1-\mu$ F ceramic capacitor (minimum) to VSS. For the 12-pin (DSJ-suffix) device, ensure that pins 1 and 2 are connected together on the PCB at the device.                                                                                                                                |
| NC             | 3             |     | These pins may have internal circuits used for test purposes. Do not make any external connections at these pins for normal operation.                                                                                                                                                                                                                  |
| OUT            | 8             | 0   | Output terminal to the charging system. Connect external 1-µF ceramic capacitor (minimum) to VSS.                                                                                                                                                                                                                                                       |
| Thermal<br>PAD |               |     | There is an internal electrical connection between the exposed thermal pad and<br>the VSS pin of the device. The thermal pad must be connected to the same<br>potential as the VSS pin on the printed-circuit board. Do not use the thermal pad<br>as the primary ground input for the device.<br>The VSS pin must be connected to ground at all times. |
| VBAT           | 6             | I   | Battery voltage sense input. Connect to pack positive terminal through a resistor.                                                                                                                                                                                                                                                                      |
| VSS            | 2             | _   | Ground terminal                                                                                                                                                                                                                                                                                                                                         |

### Absolute Maximum Ratings (NOTE1)

|                     | Parameter                                   |      |     | Unit |
|---------------------|---------------------------------------------|------|-----|------|
|                     | IN (with respect to VSS)                    | -0.3 | 30  |      |
| Input voltage       | OUT (with respect to VSS)                   | -0.3 | 20  | V    |
|                     | ILIM, FAULT, CE, VBAT (with respect to VSS) | -0.3 | 7   |      |
| Input current       | IN                                          |      | 2   | Α    |
| Output current      | OUT                                         |      | 2   | Α    |
| Output sink current | Output sink current FAULT                   |      | 15  | mA   |
|                     | -40                                         | 150  | °C  |      |
|                     | Storage temperature, Tstg                   | -65  | 150 | °C   |

**NOTE 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### ESD Ratings—JEDEC Specification

|               | Value                                                                          | Unit |   |
|---------------|--------------------------------------------------------------------------------|------|---|
| Electrostatic | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              |      | V |
| discharge     | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±500 | v |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V may actually have higher performance.

#### **Recommended Operating Conditions**

Over operating free-air temperature range (unless otherwise noted)

| symbol           | Parameter                | Min | Max | Unit |
|------------------|--------------------------|-----|-----|------|
| V <sub>IN</sub>  | Input voltage            | 3.3 | 26  | V    |
| I <sub>IN</sub>  | Input current, IN pin    |     | 1.5 | А    |
| I <sub>OUT</sub> | Output current, OUT pin  |     | 1.5 | А    |
| RILIM            | OCP programming resistor | 15  | 90  | kΩ   |
| TJ               | Junction temperature     | 0   | 125 | °C   |



## WP1111

## **Electrical Characteristics**

(Over operating free-air temperature range, unless otherwise noted)

| symbol                  | Parameter                                            | Test Condition                                                                                                               | Min  | Тур  | Max  | Unit |
|-------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| IN                      |                                                      |                                                                                                                              |      |      |      |      |
| UVLO                    | Undervoltage lockout, input power detected threshold | $\overline{CE}$ = Low,<br>V <sub>IN</sub> increasing from 0 V to 3V                                                          | 2.6  | 2.7  | 2.8  | V    |
| $V_{\text{HYS-UVLO}}$   | Hysteresis on UVLO                                   | $\overline{CE}$ = Low, V <sub>IN</sub> decreasing from 3V to 0V                                                              | 200  | 260  | 300  | mV   |
| TDGL <sub>(PGOOD)</sub> | Deglitch time, input power<br>detected status        | $\overline{CE}$ = Low. Time measured<br>from V <sub>IN</sub> 0V $\rightarrow$ 5V, 1-µs<br>rise-time, to output turning<br>ON |      | 8    |      | ms   |
| IDD                     | Operating current                                    | $\overline{CE}$ = Low, No load on OUT pin,<br>V <sub>IN</sub> = 5V, R <sub>ILIM</sub> = 25 kΩ                                |      | 400  | 600  | μA   |
| ISTDBY                  | Standby current                                      | $\overline{CE}$ = High, V <sub>IN</sub> = 5V                                                                                 |      | 65   | 95   | μA   |
|                         | JTPUT CHARACTERISTICS                                |                                                                                                                              |      |      |      |      |
| V <sub>DO</sub>         | Drop-out voltage IN to OUT                           | $\overline{CE}$ = Low, V <sub>IN</sub> = 5V, I <sub>OUT</sub> = 1A                                                           |      | 170  | 280  | mV   |
| INPUT OVER              | VOLTAGE PROTECTION                                   |                                                                                                                              |      |      |      |      |
| V <sub>OVP</sub>        | Input overvoltage protection threshold               | $\overline{CE}$ = Low, V <sub>IN</sub> increasing from<br>5V to 7.5V                                                         | 5.8  | 5.95 | 6.1  | V    |
| V <sub>HYS-OVP</sub>    | Hysteresis on OVP                                    | $\overline{CE}$ = Low, V <sub>IN</sub> decreasing from<br>7.5V to 5V                                                         | 40   | 200  | 300  | mV   |
| INPUT OVER              | CURRENT PROTECTION                                   |                                                                                                                              |      |      |      |      |
| I <sub>OCP</sub>        | Input overcurrent protection threshold range         |                                                                                                                              | 300  |      | 1500 | mA   |
| I <sub>OCP</sub>        | Input overcurrent protection threshold               | $\overline{CE}$ = Low, R <sub>ILIM</sub> = 25 kΩ,                                                                            | 1050 | 1125 | 1200 | mA   |
| BATTERY O               | /ERVOLTAGE PROTECTION                                |                                                                                                                              |      |      |      |      |
| B <sub>VOVP</sub>       | Battery overvoltage protection threshold             | $\overline{CE}$ = Low, V <sub>IN</sub> > 4.4 V                                                                               |      | 4.4  |      | V    |
| V <sub>HYS-BOVP</sub>   | Hysteresis on BV <sub>OVP</sub>                      | $\overline{CE}$ = Low, V <sub>IN</sub> > 4.4 V                                                                               | 200  | 275  | 320  | mV   |
| I <sub>VBAT</sub>       | Input bias current on VBAT pin                       | V <sub>BAT</sub> = 4.4 V, T <sub>J</sub> = 25°C                                                                              |      |      | 10   | nA   |
| THERMAL P               | ROTECTION                                            | ·                                                                                                                            |      |      |      |      |
| $T_{J(OFF)}$            | Thermal shutdown temperature                         |                                                                                                                              |      | 130  | 150  | °C   |
| T <sub>J(OFF-HYS)</sub> | Thermal shutdown hysteresis                          |                                                                                                                              |      | 20   |      | °C   |

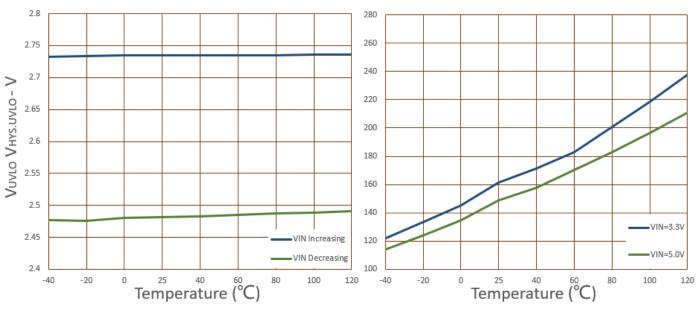
www.way-on.com

# <u>WAY ON</u>

## WP1111

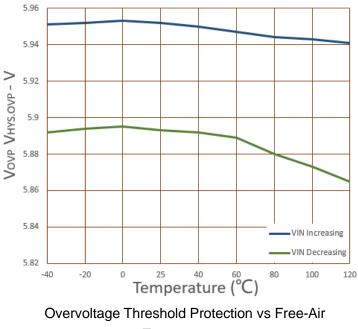
| symbol          | Parameter                          | Test Condition           | Min | Тур | Max | Unit |
|-----------------|------------------------------------|--------------------------|-----|-----|-----|------|
| LOGIC LEVE      | LOGIC LEVELS ON CE                 |                          |     |     |     |      |
| V <sub>IL</sub> | Low-level input voltage            |                          |     |     | 0.4 | V    |
| V <sub>IH</sub> | High-level input voltage           |                          | 1.4 |     |     | V    |
| IIL             | Low-level input current            | $V_{CE} = 0 V$           |     |     | 1   | μA   |
| IIH             | High-level input current           | V <sub>CE</sub> = 1.8 V  |     |     | 15  | μA   |
| LOGIC LEVE      | LOGIC LEVELS ON FAULT              |                          |     |     |     |      |
| VOL             | Output low voltage                 | I <sub>SINK</sub> = 5 mA |     |     | 0.2 | V    |
| IHI-Z           | Leakage current, FAULT pin<br>HI-Z | V <sub>FAULT</sub> = 5 V |     |     | 10  | μA   |

## **Timing Requirements**


| symbol                  | Parameter                                            | Test Condition                                                                                                                                   | Min | Nom | Max | UNIT |
|-------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| IN                      |                                                      |                                                                                                                                                  |     |     |     |      |
| t <sub>DGL(PGOOD)</sub> | Deglitch time, input power detected status           | $\overline{CE}$ = Low. Time measured<br>from V <sub>IN</sub> 0 V→5 V, 1-µs<br>rise-time, to output turning ON                                    |     | 8   |     | ms   |
| INPUT OVE               | RVOLTAGE PROTECTION                                  |                                                                                                                                                  |     |     |     |      |
| t <sub>PD(OVP)</sub>    | Input OV propagation delay <sup>(1)</sup>            | $\overline{CE}$ = Low                                                                                                                            |     |     | 1   | μs   |
| t <sub>on(ovp)</sub>    | Recovery time from<br>input overvoltage<br>condition | $\overline{CE}$ = Low, Time measured<br>from V <sub>IN</sub> 7.5V $\rightarrow$ 5 V, 1-µs<br>fall-time                                           |     | 8   |     | ms   |
| INPUT OVE               | RCURRENT PROTECTION                                  |                                                                                                                                                  |     |     |     |      |
| t <sub>BLANK(OCP)</sub> | Blanking time, input overcurrent detected            |                                                                                                                                                  |     | 176 |     | μs   |
| t <sub>REC(OCP)</sub>   | Recovery time from input overcurrent condition       |                                                                                                                                                  |     | 64  |     | ms   |
| BATTERY O               | VERVOLTAGE PROTECTION                                |                                                                                                                                                  |     |     |     |      |
| t <sub>DGL(BOVP)</sub>  | Deglitch time, battery<br>overvoltage detected       | $\overline{CE} = Low, V_{IN} > 4.4 V. Time$<br>measured from V <sub>VBAT</sub> rising<br>from 4.1 V to 4.4 V to<br>$\overline{FAULT}$ going low. |     | 176 |     | μs   |

(1) Not tested in production. Specified by design.

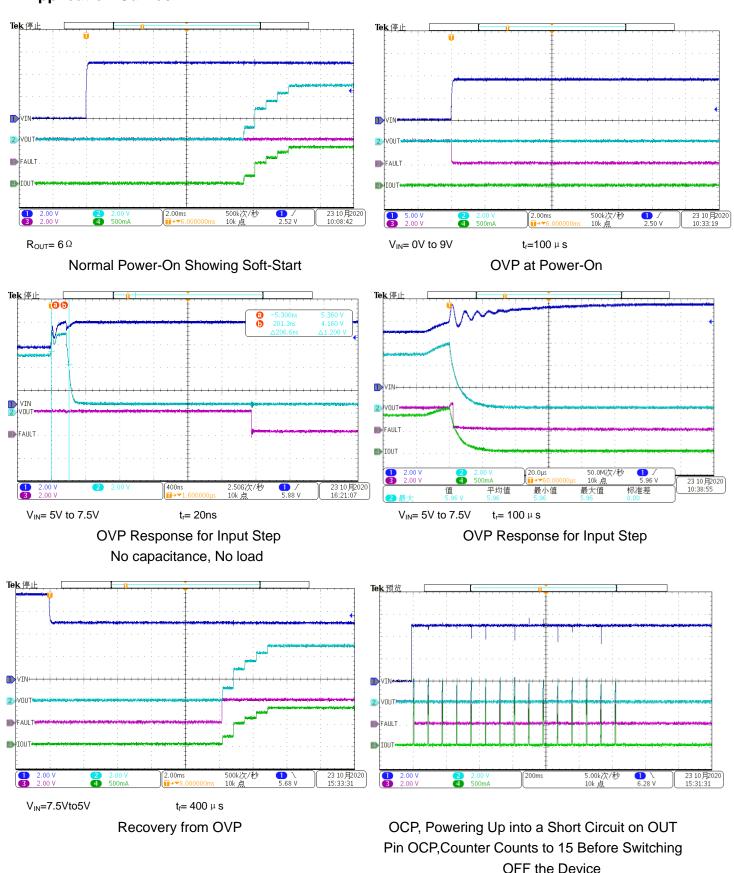


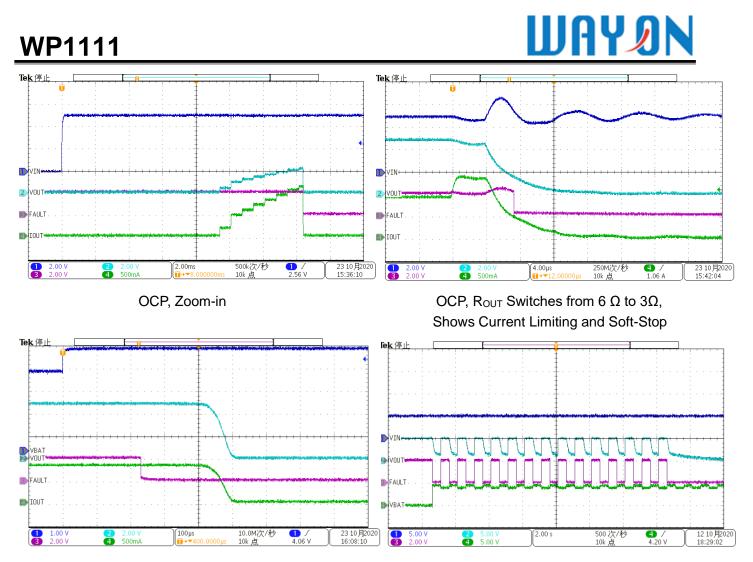

## **Typical Characteristics**

Test conditions (unless otherwise noted) for typical operating performance: VIN = 5 V, CIN = 1  $\mu$ F, COUT = 1  $\mu$ F, R<sub>ILIM</sub> = 25 kΩ, RBAT = 100 kΩ, TA = 25°C, VPU = 3.3 V



Undervoltage Lockout vs Free-Air Temperature


Dropout Voltage (IN to OUT) vs Free-Air Temperature

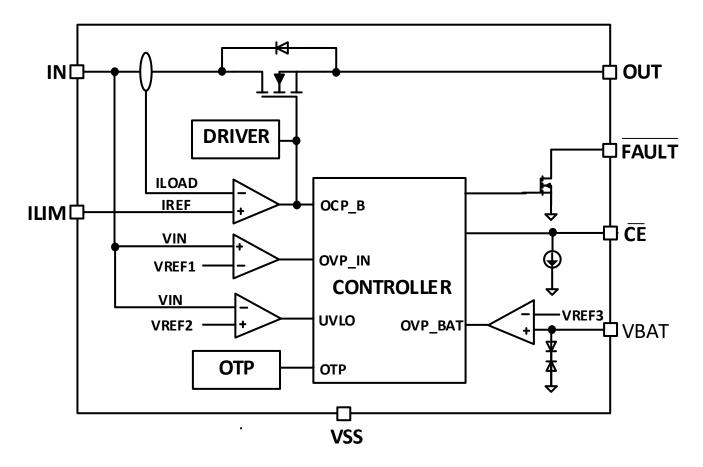



Temperature

# <u>WAYON</u>

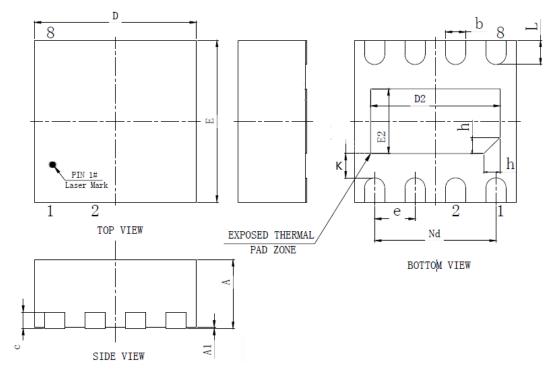
**Application Curves** 






BAT-OVP, VVBAT Steps from 3.5 V to 4.4 V, Shows tDGL(BAT-OVP) and Soft-Stop

BAT-OVP, VVBAT Cycles Between 3.5 V and 4.4 V, Shows BAT-OVP Counter




## **Block Diagram**





## **Package Information**



DFN-8

| CYMDOL | DIMENSIONS IN MILLIMETERS |             |       |  |  |  |
|--------|---------------------------|-------------|-------|--|--|--|
| SYMBOL | MIN                       | NOM         | MAX   |  |  |  |
| Α      | 0.70                      | 0.75        | 0.80  |  |  |  |
| A1     | 0                         | 0.02        | 0.05  |  |  |  |
| b      | 0.20                      | 0.25        | 0.30  |  |  |  |
| С      |                           | 0.203REF    |       |  |  |  |
| D      | <b>D</b> 1.95 2.00        |             | 2.05  |  |  |  |
| D2     | 1.55                      | 1.60        | 1.605 |  |  |  |
| е      | 0.50BSC                   |             |       |  |  |  |
| Nd     |                           | 1.50BSC     |       |  |  |  |
| E      | 1.95                      | 2.00        | 2.05  |  |  |  |
| E2     | 0.75                      | 0.80        | 0.85  |  |  |  |
| L      | 0.25                      | 0.30        | 0.35  |  |  |  |
| К      | 0.25                      | 0.25 0.30 0 |       |  |  |  |
| R      |                           | 0.20 REF    |       |  |  |  |



#### **Ordering Information**

| Part Number | Package   | Packing Quantity | Marking     |
|-------------|-----------|------------------|-------------|
| WP1111-F28R | DFN2*2-8L | 3k/Reel          | WP1111 XXXX |

#### **Contact Information**

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201202

Tel: 86-21-68960674 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

**URYAN** is registered trademark of Wayon Corporation.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time

Users should verify actual device performance in their specific applications.