ACM3106 2×21W 立体声 | 1×42W 单声道, 模拟输入 D 类音频功放 超低功耗, 具有展频和 AGL 功能

1. 特征

• 单电源供电

- PVDD: 4.5V 到 16V
- 内置 5V 输出的 LDO

• 多种输出配置

- 2×14.5W, 1% THD+N, 12V, 4Ω, BTL
- 1×29W, 1% THD+N, 12V, 2Ω, PBTL
- 2×21W, 1% THD+N, 14.5V, 4Ω, BTL
- 1×42W, 1% THD+N, 14.5V, 2Ω, PBTL

• 优异的音频性能

- THD+N≤0.02% 测试条件: 1W, 1kHz, PVDD = 12V
- 高阶调制使得在全频段内有着更低的 THD+N 指标
- A-weighted 加权底噪≤63 uV_{RMS}

• 高效率 Class-D 性能

- >90% 效率使得大部分情况下不用散热片
- 超低静态电流: <28mA, PVDD=12V, 输出 LC =10uH+0.68uF
- 专利技术全输出电平降低电感纹波电流

降低 EMI 技术

- 展频功能
- 180° PWM 相移

• 增益管理

- 提供 26dB, 36dB 两个增益档位
- Mute 静音功能
- 自动增益控制功能防止输出削波失真

• 模拟端性能保护

- 短路保护, 自恢复功能可选
- 欠压保护
- 过压保护
- 输出直流检测保护
- 过热保护及自恢复

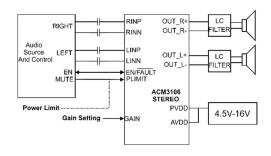
2. 应用

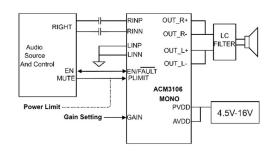
- 蓝牙音箱、WIFI 音箱
- 声霸
- 音频设备、监视器
- 家庭音响设备
- 液晶电视、笔记本

3. 概述

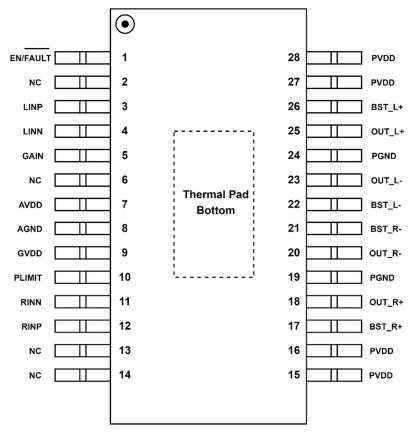
ACM3106 支持立体声/单声道输出,在立体声模式下可为 4Ω 负载提供 2X21W 的输出功率,在单声道模式下可为 2Ω 负载提供 1X42W 的输出功率,是一款高效率的 D 类音频功放,工作时效率可高达 90%。为了最大限度地降低功耗,采用了一种新型专利调制方案 - 动态 PWM 调制技术,用来最大限度地降低在整个输出功率范围内的电感损耗。

ACM3106 工作电压范围 4.5V-16V,输出配置可选用立体声BTL,也可选用单声道 PBTL。

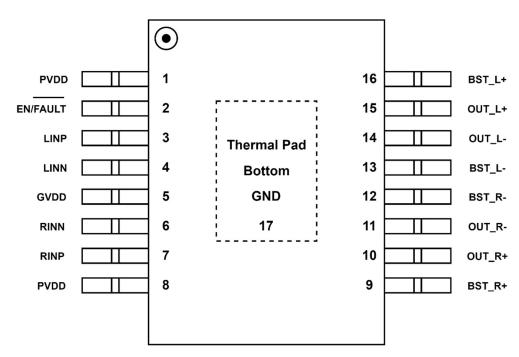

为降低 EMI 噪声,ACM3106 提供了固定频率 340KHz 的展频功能,在一定条件下可以免输出滤波电感。


ACM3106 还提供全差分输入,pop 音抑制,提供两种增益 (26dB and 36dB)选择功能。提供可调节的输出功率限制功能 和输出直流检测保护功能用于保护喇叭。 另有短路保护、过热保护和过压/欠压保护可防止器件在故障情况下受损。

4. 器件信息


	封装	尺寸	包装
ACM3106ETR	TSSOP 28	9.7 mm × 4.4 mm	3K/盘
ACM3106ESR	ESOP 16	9.9 mm × 3.9 mm	3K/盘

• 简化典型应用图



5. 管脚描述

Pin No.	名称	类型	描述			
1	EN/FAULT	AIO	使能脚,高电平有效(LOW=输出 Hi-Z,HIGH=允许输出),符合			
			AVDD 的 TTL 逻辑电平			
			错误报告脚, DC,OC 错误信息,Open Drain			
			 FAULT = 高, 正常模式			
			FAULT = 低,错误状态			
2	NC	NC	NC			
3	LINP	AIN	左声道正输入			
4	LINN	AIN	左声道负输入			
5	GAIN	AIN	增益选择,下拉电阻决定			
6	NC	NC	NC			
7	AVDD	PWR	模拟电源			
8	AGND	G	GND			
9	GVDD	PO	5V 输出, 同时用于 PLIMIT 分压			
10	PLIMIT	AIN	功率限制调节,通过 GVDD 分压, <0.5V 是 mute,			
			0.6V <v(plimit)<3v 调节输出限制功率的大小,="">4.2V 没有功率</v(plimit)<3v>			
			限制			
11	RINN	AIN	右声道的负输入			
12	RINP	AIN	右声道的正输入			
13	NC	NC	NC			
14	NC	NC	NC			
15	PVDD	PWR	供电电源			
16	PVDD	PWR	供电电源			
17	BST_R+	BST	用于右声道的正输出的自举电容脚,连接到 470nF X5R 或更好			
			的陶瓷电容到 OUT_R+			
18	OUT_R+	PO	右通道正输出			
19	PGND	G	Ground			
20	OUT_R-	PO	右声道负输出			
21	BST_R-	BST	用于右声道的负输出的自举电容脚,连接到 470nF X5R 或更好的陶瓷电容到 OUT R-			

22	BST_L-	BST	用于左声道的负输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_L-
23	OUT_L-	PO	左声道的负输出
24	PGND	G	Ground
25	OUT_L+	PO	左声道的正输出
26	BST_L+	BST	用于左声道的正输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_L+
27	PVDD	PWR	供电电源
28	PVDD	PWR	供电电源

Pin No.	名称	类型	描述
1	PVDD	PWR	供电电源
2	EN/FAULT	AIO	使能脚,高电平有效(LOW=输出 Hi-Z,HIGH=允许输出),符合
			AVDD 的 TTL 逻辑电平
			错误报告脚, DC, OC 错误信息, Open Drain
			FAULT = 低,错误状态
3	LINP	AIN	左声道正输入
4	LINN	AIN	左声道负输入
5	GVDD	PO	5V 输出,同时用于 PLIMIT 分压
6	RINN	AIN	右声道的负输入
7	RINP	AIN	右声道的正输入
8	PVDD	PWR	供电电源
9	BST_R+	BST	用于右声道的正输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_R+
10	OUT_R+	PO	右通道正输出
11	OUT_R-	PO	右声道负输出
12	BST_R-	BST	用于右声道的负输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_R-
13	BST_L-	BST	用于左声道的负输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_L-
14	OUT_L-	PO	左声道的负输出
15	OUT_L+	PO	左声道的正输出
16	BST_L+	BST	用于左声道的正输出的自举电容脚,连接到 470nF X5R 或更好
			的陶瓷电容到 OUT_L+
17	Thermal Pad GND	G	Ground

6. 规格

6.1 绝对最大值

		MIN	MAX	UNIT
PVDD, AVDD	电源电压	-0.3	20	V
	输入信号 LINP, LINN, RINN, RINP	-0.3	6.3	V
Input Voltage, V₁	PLIMIT	-0.3	GVDD+0.3	V
	EN/FAULT	-0.3	PVDD+0.3	V
T _A	环境工作温度	-40	85	℃
Tı	工作结温	-40	160	℃
T _{stg}	存储环境温度	-40	150	℃

(1) 任何超出表中的绝对最大值的情况,都可能造成器件永久损坏。绝对最大值,不是工作条件。任何超出推荐值范 围的操作都有可能造成芯片损坏,长时间处于最大额定条件下工作可能会影响芯片的可靠性。

6.2 ESD 评级

			VALUE	UNIT
	静电放电	人体模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001-2017	<u>+</u> 2000	V
$V_{(ESD)}$	一下电双电	充电器件模型 (CDM),符合 ANSI/ESDA/JEDEC JS-002- 2018 ⁽²⁾	<u>+</u> 500	V

- (1) JEDEC 文件 JS-001-2017 指出 2000-V HBM 允许使用标准 ESD 控制流程进行安全制造。
- (2) JEDEC 文件 JS-002-2018 指出 500-V CDM 允许使用标准 ESD 控制流程进行安全制造。

6.3 推荐工作条件

超过自有大气温度范围(除非另有说明)

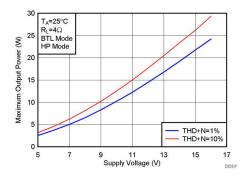
符号	参数	测试条件	MIN	NOM	MAX	UNIT
V _(SUPLLY)	电源电压	PVDD, AVDD	4.5		16	V
V _{IH}	输入为高电平时的电压	EN/FAULT	2			V
V _{IL}	输入为低电平时的电压	EN/FAULT			0.8	V
Vol	输出为低电平时的电压	EN/FAULT, R _{PULL-UP} =100kΩ,			0.8	V
	期山为瓜屯干的的屯压	PVDD=12V				
Іін	输入为高电平时的电流	EN/FAULT			50	μΑ
I _{IL}	输出为低电平时的电流	EN/FAULT			5	μΑ
R _L (BTL)	│ │ 最低负载阻抗	(LC filter=10uH+0.68uF)	3.2	4		
R _L (PBTL)	取以以料阻机	(LC IIIter=10uH+0.68uF)	1.6	2		
Tı	工作结温		-40		160	°C
TA	环境工作温度		-40		85	°C

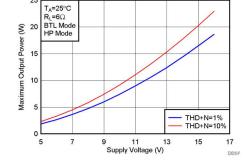
6.4 热信息

		ACM3106, TSSOP 28 PINS	
		JEDEC STANDARD	UNIT
		4-LAYER PCB	
θ_{JA}	连接环境热阻	28	°C/W
θл	连接到顶部(外壳)热阻	22	°C/W
ψл	连接到顶部特征参数	1.2	°C/W
		ACM3106, ESOP 16 PINS	
		JEDEC STANDARD	UNIT
		4-LAYER PCB	
θ_{JA}	连接环境热阻	45	°C/W
θ_{JT}	连接到顶部 (外壳) 热阻	10	°C/W
ψл	连接到顶部特征参数	1.2	°C/W

6.5 电气特性

PVDD=12V, Fin=1kHz, Load=4 Ω , 自举电容=0.47μF, 室温 25 C, LC filter=10uH+0.68uF, Fsw=340kHz, High Performance 模式(除非另有说明)

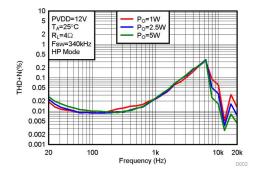

参数		测试条件	MIN	TYP	MAX	UNIT
DC 电气特性						
Vos	输出偏置电压 (差分测量)	V _I =0V, BTL 模式	-15		15	mV
I _{cc}	静态电流	EN≥2V, LC filter=10μH+0.68μF, 2×BTL		28		mA
I _{CC(SD)}	关断电流	EN≤0.8V, PVDD=12V		20		μΑ
	导通电阻,上管 NMOS			135		mΩ
R _{DS(ON)}	导通电阻,下管 NMOS	PVDD=12V, I _{OUT} = 500mA, T _J = 25		135		mΩ
	7.2. CH., 自	 下拉接地或悬空		26		dB
G	增益	上拉接高		36		dB
	 开启时间	上址按同 EN≥2V		_		
t _{ON}				10		ms
toff	关断时间	EN≤0.8V		5.7		μs
GVDD	栅极驱动电源	I _{GVDD} < 200 uA		5		V
AC 电气特性,						
PSRR	电源纹波抑制比	200mV _{PP} ripple at 1kHz, Gain=26dB,		-70		dB
		Input AC coupled to GND				
P _{O(SPK)}	++/++	THD+N = 10%, f = 1kHz, PVDD = 12V		17		W
	持续输出功率	THD+N = 1%, f = 1kHz, PVDD = 12V		14		W
,	(4Ω Load)	THD+N = 10%, f = 1kHz, PVDD = 14.5V		24		W
	4人山 六四	THD+N = 1%, f = 1kHz, PVDD = 14.5V		20		W
	输出底噪,	Gain = 26dB		63		μVrms
Vn	20Hz to 22kHz, A-weighted filter	Gain = 36dB		76		μVrms
F _{sw}	 开关频率	展频关闭		340		kHz
rsw	万天频平	展频启动	300	340	380	kHz
X-talk ⁽¹⁾	串扰	V₀=2Vrms, Gain=26dB, f=1kHz, 基于		90		dB
A-talk'	中九	ACM3106 EVM				
AC 电气特性,	单声道 PBTL 输出					
PSRR	电源纹波抑制比	200mVpp 纹波 1kHz, Gain=26dB, Input		-70		dB
		AC coupled to GND				
		THD+N = 10%, f = 1kHz, PVDD = 12V		24.5		W
D.	持续输出功率	THD+N = 1%, f = 1kHz, PVDD = 12V		20		W
P _{O(SPK)}	(3Ω Load)	THD+N = 10%, f = 1kHz, PVDD = 14.5V		35.6		W
		THD+N = 1%, f = 1kHz, PVDD = 14.5V		29		W
Vn	输出底噪, 20Hz to 22kHz, A-weighted	Gain = 26dB		63		μVrms
**	filter	Gain = 36dB		75		μVrms
		展频关闭		340		kHz
Fsw	开关频率	展频启动	300	340	380	kHz
保护功能		7K7X7H-93				
OCE _{THRES}	过流保护门限	喇叭输出电流(Post LC filter), 喇叭电	5	6		Α
OCLIHRES		流, PVDD=14.5V	,			
$UVE_{THRES(PVDD)}$	电源 PVDD 欠压门限			4		V
OVE _{THRES(PVDD)}	电源 PVDD 过压门限			16.2		V
DCE _{THRES}	输出 DC 保护门限	Class D Amplifier's output DC voltage cross speaker load to trigger Output		2.5		V
		DC Fault protection				
T _{DCDET}	输出 DC 检测时间	Class D Amplifier's output remain at or above DCE _{THRES}		670		ms
OTE _{THRES}	过热保护点			160		°C
OTE _{Hysteresis}	退滞			30		°C


¹⁾ 串扰高低取决于 L/R 输出通道的 PCB 走线布局 (L 通道和 R 通道布线距离)、电感类型等因素。

典型特性曲线 7.

7.1 立体声 Bridge Tied Load (BTL) 特性曲线

室温 25℃下测试 (特别标注除外)。基于 ACM3106 DEMO 板进行测量,AP 仪器为 APX5xx 系列,Analog Analyzer filter 选 择 20kHz 低通滤波,PWM 调制器模式设置为 High Performance 模式,Fsw = 340kHz, LC filter=10 μ H+0.68 μ F。



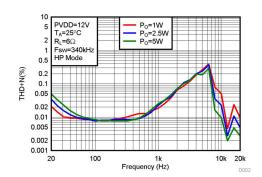

(Load= 4Ω , Fsw=340kHz, High Performance Mode)

Figure 1 Max Output Power vs PVDD

Figure 2 Max Output Power vs PVDD

(Load=6Ω, Fsw=340kHz, High Performance Mode)

(Load= 4Ω , Fsw=340kHz,High Performance Mode)

Figure 3 THD+N vs Frequency

(Load= 6Ω , Fsw=340kHz,High Performance Mode)

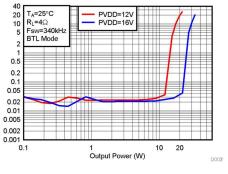


Figure 4 THD+N vs Frequency

40 20 10

0.2 0.1 0.05

0.02 0.01 0.005

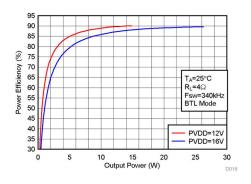
0.002

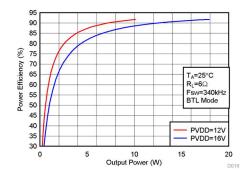
0.001

(%) N+QHL 0.5 T_A=25°C R_L=6Ω

BTL Mode

(Load=6Ω, Fsw=340kHz, High Performance Mode) Figure 6 THD+N vs Output Power


(Load= 4Ω , Fsw=340kHz, High Performance Mode)

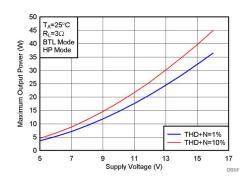

0.5

0.2 0.1 0.05

0.002

0.001

(Load= 4Ω , Fsw=340kHz, High Performance Mode)


Figure 7 Efficiency vs Output Power (Per CH)

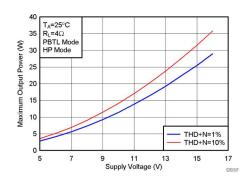
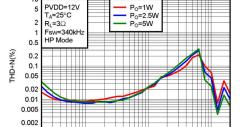

(Load=6Ω, Fsw=340kHz, High Performance Mode)

Figure 8 Efficiency vs Output Power (Per CH)

7.2 单声道 Parallel Bridge Tied Load (PBTL) 特性曲线


室温 25℃下测试 (特别标注除外)。基于 ACM3106 DEMO 板进行测量,AP 仪器为 APX5xx 系列,Analog Analyzer filter 选择 20kHz 低通滤波,PWM 调制器模式设置为 High Performance 模式,Fsw = 340kHz, LC filter=10 μ H+0.68 μ F。

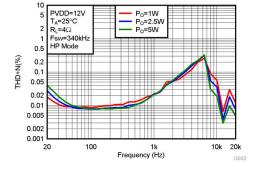
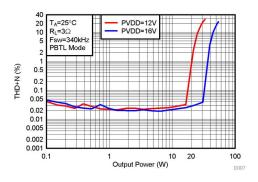

(Load=3Ω, Fsw=340kHz, High Performance Mode)

Figure 9 Output Power vs PVDD

(Load=4Ω, Fsw=340kHz,High Performance Mode)

Figure 10 Output Power vs PVDD



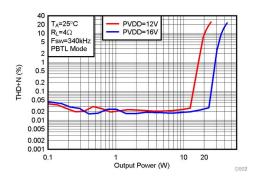
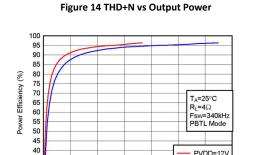
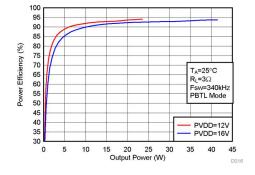

(Load= 3Ω , Fsw=340kHz,High Performance Mode)

Figure 11 THD+N vs Frequency

1k Frequency (Hz) 20k


(Load=4 Ω , Fsw=340kHz,High Performance Mode) Figure 12 THD+N vs Frequency



(Load=3 Ω , Fsw=340kHz,High Performance Mode)

Figure 13 THD+N vs Output Power

(Load= 4Ω , Fsw=340kHz,High Performance Mode)

(Load=3 Ω , Fsw=340kHz,High Performance Mode)

Figure 15 Efficiency vs Output Power

(Load=4 Ω , Fsw=340kHz,High Performance Mode)

15 20 Output Power (W)

Figure 16 Efficiency vs Output Powe

PVDD=12V PVDD=16V

30 35

8. 细节描述

8.1 概述

ACM3106 是一款高效率、低功耗的 D 类功放。标准 LC 滤波器下,静态电流可以低至 28mA。内置 $135-m\Omega$ MOSFET,允许输出电流可高达 6A。具备高效率、高性能的特性,绝大多数情况下不需要额外散热片,这些优异的性能表现使其在同类产品中脱颖而出。

35 30

5

10

8.2 功能框图

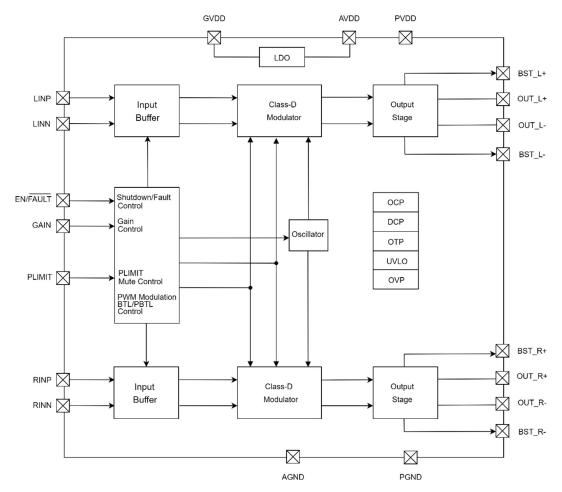


Figure 17 Function Block Diagram

8.3 特征描述

8.3.1 增益设定

ACM3106 增益通过 GAIN 脚下拉电阻来设置。不能在上电后改变增益的设定。Table 1 列出了推荐的电阻值和增益。

Table 1. 增益设定

增益选择	R1 (to GND)	芯片内部输入阻抗
26dB	Pull to Low/Floating	30k Ω
36dB	Pull to High	5.987kΩ

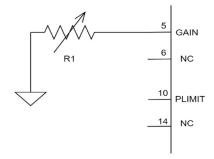


Figure 18 增益设定

8.3.2 PWM 调制模式和 BTL/PBTL 选择

ACM3106 支持固定 High Performance PWM 调制模式,并通过输入 LINP/LINN 接地来选择 PBTL 单声道模式,详见典型应用图示。

8.3.3 自动增益限制

PLIMIT 脚可用来作为自动增益限制输出功率。V_{PLIMIT} (PLIMIT 脚上的电压值)由 GVDD 和 GND 之间的分压电阻分压而来,该分压值的大小可决定限制功率的大小。V_{PLIMIT} 设定输出峰峰值电压。如图 Figure 20 所示,V_{PLIMIT} 限定了峰峰值电压,以防止失真。PLIMIT 可以在 0.5V 到 3V 之间调节,输出峰值会限制在~5×V_{PLIMIT}。当 ACM3106 的输入信号过大时,自动增益限制 AGL 会自动减小功放的增益使得输出信号不会发生削顶失真。当 V_{PLIMIT}<0.5V, 芯片会进入静音模式。当 V_{PLIMIT}>4.2V, 芯片没有功率限制功能。

Table 4. 功放表现 vs V_{PLIMIT}

V _{PLIMIT} 电压值	功放表现状态	描述
<0.5V	静音	关闭输出,静音
0.5V~3V	自动增益限制 AGL	自动增益限制 AGL
>4.2V	关闭自动增益限制 AGL	关闭自动增益限制 AGL

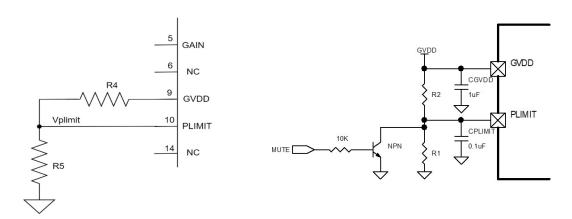


Figure 19 功率限制电路和静音电路

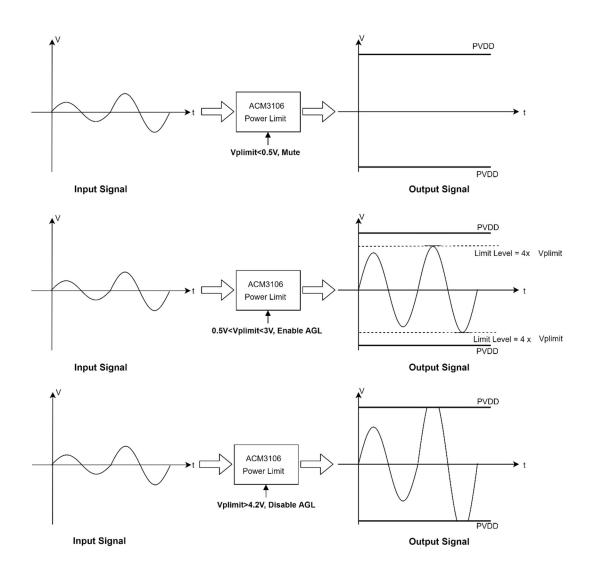


Figure 20 自动增益限制举例

8.3.4 关机/使能控制

EN 拉低,ACM3106 进入关机状态以节能。一旦 EN 拉低,输出会被静音,内部的稳压器也会停止工作以节能。EN 内部有下拉,悬空也会进入关机模式。为了获得更好的关机性能,请在电源关断前,将芯片置于关机模式。

8.3.5 DC 直流保护

ACM3106 具有输出直流检测电路,可用于保护喇叭。当发生输入电容损坏、短路等情况时,输出直流检测电路可避免大的直流电流或小于 2HZ 的交流电流信号损坏喇叭。当差分输出电压或者单边超出直流保护门限(典型值 2.5V)670ms就会触发直流错误报警。输出直流保护触发后,需要通过 EN 再次使能解除错误报警。连接 FAULT 和 EN 脚,能够在错误报警时拉低 EN 自动关闭芯片,在 EN 拉高后自动清除错误报警。

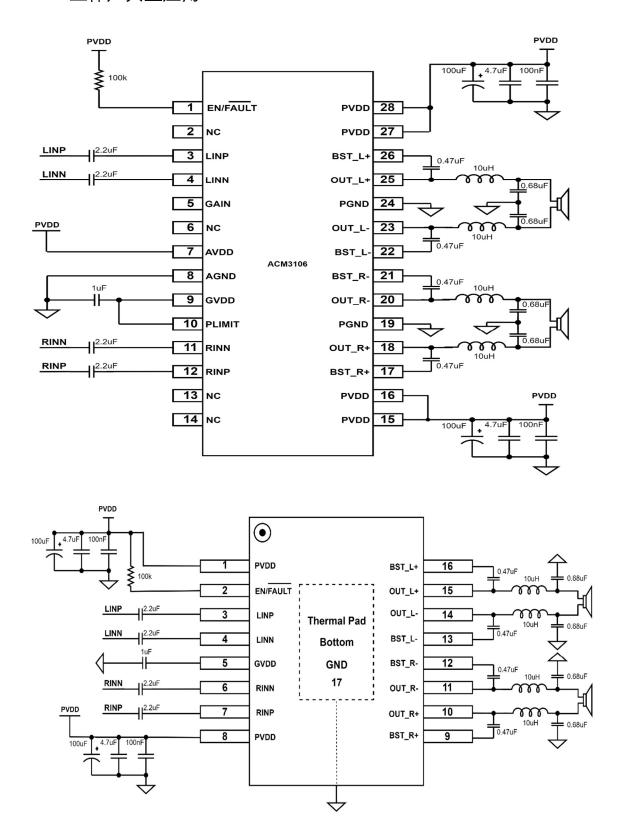
8.3.6 短路保护和自恢复功能

ACM3106 具有因輸出短路造成的过流保护功能。短路保护时 FAULT 脚会被拉低,输出会进入高阻状态。锁定后可以通过 EN 再次使能解除锁定。如果要实现自动恢复功能,可以将 FAULT 和 EN 脚连接一起。在错误报警时拉低 EN 自动关闭芯片,在 EN 拉高后自动清除错误报警。

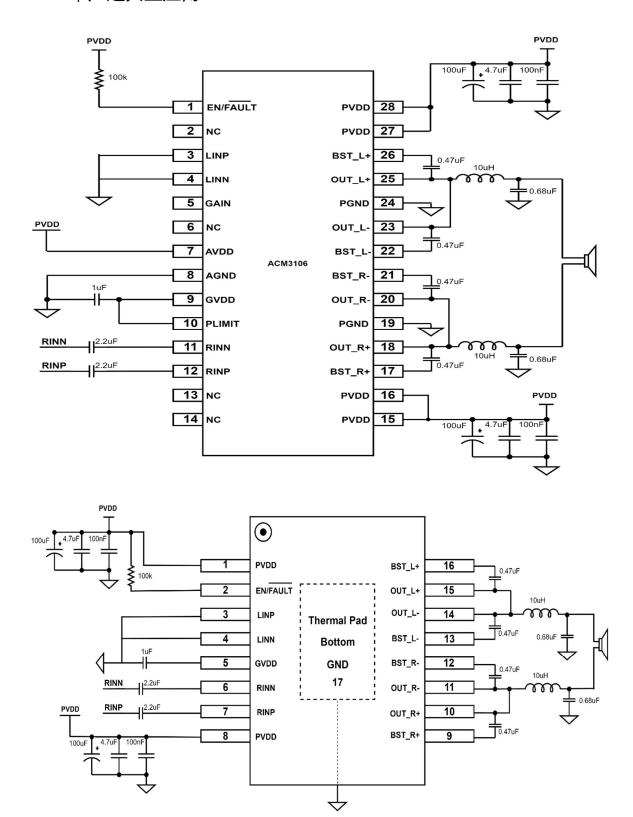
8.3.7 过热保护

当芯片内部温度超过 160℃ 时,为防止芯片损坏,会启动温度保护。温度保护点大概有 +/-10℃ 的浮动范围。当启动过热保护后,芯片输出端关闭,进入关机状态。过热保护不会把 FAULT 拉低。

8.3.8 过压保护

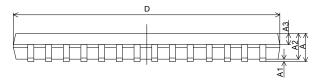

PVDD 电压超过过压阈值 OVE_{THRES(PVDD)} (典型值 16.2V),器件会从工作模式切换到高阻(Hi-Z)状态。当 PVDD 回落至 15.6V (典型值)时,恢复到工作状态。

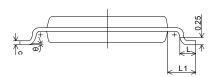
8.3.9 欠压保护

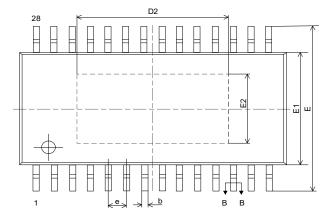

PVDD 电压低于欠压阈值 UVE_{THRES(PVDD)} (典型值 4V), 器件会从工作模式切换到高阻(Hi-Z)状态。当 PVDD 回升至 4.2V (典型值)时,恢复到工作状态。

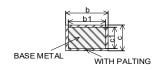
8.4 典型应用图

8.4.1 立体声典型应用

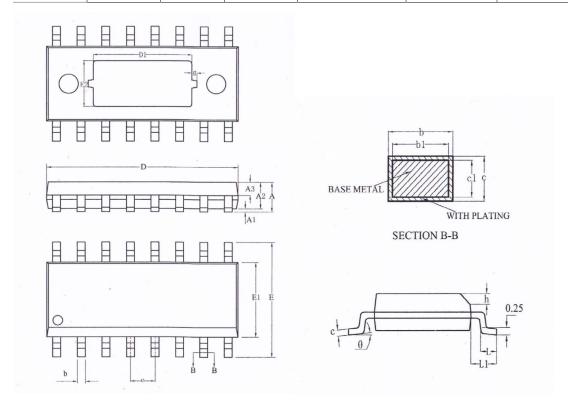



8.4.2 单声道典型应用




9. 封装信息

型号	封装类型	最小包装	最小起订量	生态计划	湿度敏感性等级	芯片标识
ACM3106ETR	TSSOP28	3000	3000	符合 RoHS 标准的无	MSL3	ACM3106
	Tape and			铅表面处理		
	Reel					



SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.80	_	1.00	
A3	0.39	0.44	0.49	
b	0.20	_	0.29	
b1	0.19	0.22	0.25	
С	0.13	_	0.18	
c1	0.12	0.13	0.15	
D	9.60	9.70	9.80	
Е	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
е	0.65BSC			
L	0.45	0.60	0.75	
L1	1.00BSC			
θ	0	_	8°	

L/F 载体尺寸	D2	E2	
(mil)	DZ		
150*110	3.66REF	2.65REF	
232*118	5.50REF	2.70REF	

型 号	封装类型	最小包装	最小起订量	生态计划	湿度敏感性等级	芯片标识
ACM3106ESR	ESOP16 Tape and Reel	3000	3000	符合 RoHS 标准的无铅表面处理	MSL3	ACM3106

evamoi	MILLIMETER		
SYMBOL	MIN	NOM	MAX
A		_	1.65
A1	0.05	_	0.15
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39		0.47
b1	0.38	0.41	0.44
С	0.20	_	0.24
cl	0.19	0.20	0.21
D	9.80	9.90	10.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	1.27BSC		
h	0.25	-	0.50
L	0.50	_	0.80
L1	1.05REF		
θ	0		8,

Size (mm) (mil)	DI	E2	g
94*200	5.08REF	2.39REF	0.25REF