

24bit, 192KHz 双通道, 差分输出数模转换电路

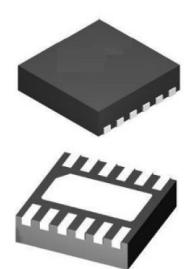
产品简述

MS5281D是一款立体声数模转换芯片,内含插值滤波器、multi bit数模转换器、差分输出模拟滤波器。MS5281D支持大部分的音频数据格式。MS5281D基于一个带线性模拟低通滤波器的四阶multi-bitΔ-Σ调制器,而且本芯片可以通过检测信号频率和主时钟频率,在2KHz 和200KHz 之间自动调节采样率。

MS5281D可以工作在3.3V和5V下。这些特性使它成为DVD播放解码器、数字通信设备等无线设备的理想选择。

MS5281D 采用 DFN12 封装。

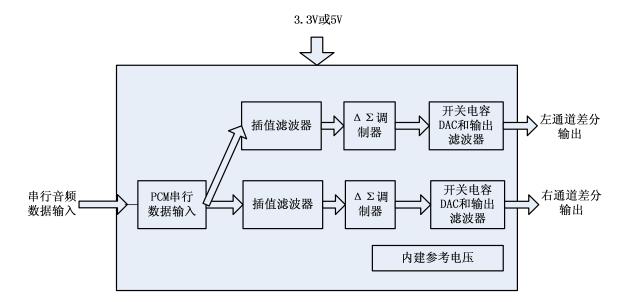
主要特点


- Muti-bit∆Σ调制器
- 24bit D/A 转换器
- 自动检测最大到 192KHz 的信号频率
- 110dB 动态范围
- 0.003% 总谐波失真
- 低时钟抖动敏感度
- 3.3V 或 5V 工作电压
- 线性滤波输出
- 封装形式: DFN12

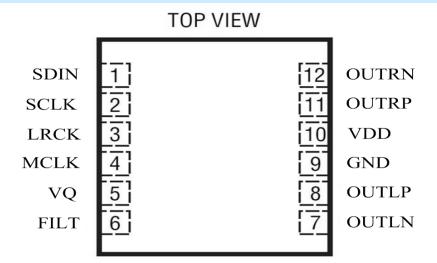
应用

- 数字通讯设备
- 汽车音响系统
- DVD 音频系统

产品规格分类


ı	/ 111177 UH 74 2	<u> </u>	
	产品	封装形式	丝印名称
	MS5281D	DFN12	5281D

DFN12



内部框图

管脚排列图

管脚描述

管脚编号	管脚名称	管脚属性	管脚描述
1	SDIN		串行音频数据输入端
2	SCLK	I	外部串行时钟输入端
3	LRCK		左/右时钟端口
4	MCLK	I	主时钟端口
5	vq	10	直流电压
6	FILT	10	正的参考电压
7	OUTLN	0	模拟左通道负输出端口
8	OUTLP	0	模拟左通道正输出端口
9	GND	-	地
10	VDD	-	模拟电源
11	OUTRP	0	模拟右通道正输出端口
12	OUTRN	0	模拟右通道负输出端口

极限参数

绝对最大额定值

注意: 绝对最大额定值表示不被破坏的限界,不保证实际工作状态

参数	符号	额定值	单位	注
供电电压	VDD	-0.3~7	V	
输入管脚电流	I _{in}	-10~+10	uA	_
数字输入电压	V _{IND}	-0.3∼VDD+0.3	V	
工作温度	T _{OP}	-55~125	$^{\circ}$	_
存储温度	T_{stg}	−65 ~ 150	$^{\circ}$	1

工作电源电压范围

			参数范围			
参数	符号	最小	标准	最大	单位	注
电源电压范围	VDD	3.0		5.5	V	1
温度范围	T _A	-40		+85	$^{\circ}$	1

电气参数

DAC 模拟特性

(TA = 25°C,满幅输出正弦信号, 997Hz, Fs=48/96/192kHz; RL = 3kΩ, CL = 10pF,测试带宽 10 Hz 至 20kHz。)

·						
		3.3V		单位		
	参数 					
动态性能						
动态范围	24 bit	A-weighted	100	102		dB
总谐波失真						
	24 bit	OdB	0.003			%
		-60dB	0.1	0.3		%
隔离度						
通道隔离度(1KHz)			95	100		dB
DAC 精度	_					
通道间增益匹配误差				0.1	0.2	dB
模拟输出						
			0.63*VD	0.66*VD	0.69*VD	
满幅度输出电压			D	D	D	Vpp
直流电压	V _Q			0.5•VDD		VDC
AOUT 端最大直流电流	I _{OUTmax}			3.3		mA
VQ 端最大电流	I_{Qmax}			1		mA
最大阻性负载	R_L			1		kΩ
最大容性负载	C _L			1000		pF
输出阻抗	Z _{OUT}			110		Ω

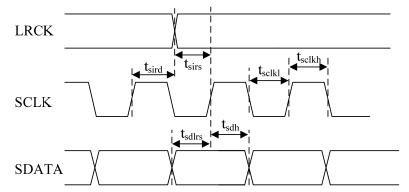
滤波特性

参数	dr	符号	具 小店	曲刑店	最大值	
	Χ	打亏	最小值	典型值	取入阻	单位
Single-Speed 模式			1	T	1	
通频带	至 -0.1dB 拐点				0.35	Fs
世 奶市	至 -3dB 拐点				0.4992	Fs
40Hz 到 15KHz 自	り频率响应		-0.07		+0.55	dB
衰减带	i I		0.54			Fs
衰减幅	度		55			dB
群延时	ţ	Tgd		10/fs		S
Double-Speed 模式						
77 LT - 11-	至 -0.1dB 拐点		0		0.22	Fs
通频带	至 -3dB 拐点		0		0.501	Fs
40Hz 到 15KHz 自	り频率响应		-0.02		+0.2	dB
衰减带	Ť		0.54			Fs
衰减幅	度		55			dB
延时		Tgd		5/Fs		S
Quad-Speed 模式						
	至 -0.1dB 拐点		0		0.11	Fs
通频带	至 -3dB 拐点		0		0.469	Fs
40Hz 到 15KHz 自	り频率响应		-0.01		+0.1	dB
衰减带			0.54			Fs
衰减幅	度		55			dB
延时		Tgd		2.5/Fs		S

数字输入特性

参数	符号	最小值	典型值	最大值	单位
输入高电平	V _{IH}	VDD-0.6			V
输入低电平	V_{IL}			0.6	V
输入漏电流	l _{in}		0.02		uA
输入电容			3	8	pF

功耗参数


参数				3.3V		
			最小值	典型值	最大值	单位
	工作状态	I _A		16	25	mA
工作电流	关闭状态	I _A		100		uA
	1KHz	PSRR		70		dB
电源抑制	60Hz	PSRR		50		dB

开关特性(串行接口)

参数		符号	最小值	典型值	最大值	单位
MCLK	频率		2		50	MHz
MCLK 1	占空比		45		55	%
	256x,384x,1024x	Fs	8		50	kHz
	256x,384x		84		134	kHz
/A > IV	512x,768x		42		67	kHz
输入采样率	1152x		30		34	kHz
(MCLK/LRCK)	128x,192x		50		100	kHz
	64x,96x		100		200	kHz
	128x,192x		168		200	kHz
LRCK -	古空比		45	50	55	%
SCLK 刖	永宽低	tsclkl	20			ns
SCLK 刖	永宽高	tsclkh	20			ns
SCLK 占空比			45	50	55	%
SCLK 上升沿到 LRCK 边沿的延迟		tslrd	20			ns
SCLK 上升沿到 LRCK 边沿的建立时间		tslrs	20			ns
SDIN 有效到 SCLK 上升沿的建立时间		tsdlrs	20			ns
SCLK 上升沿到 S	DIN 的保持时间	tsdh	20			ns

外部串口输入时序:

功能描述

MS5281D 接受标准的音频采样频率,包括在QSM 模式下的48、44.1、32kHz,在DSM 模式下的96、88.2、64kHz,在SSM 模式下的192、176.4、128kHz。音频数据通过串行输入数据端输入(SDIN)。左/右通道时钟(LRCK)决定当前输入数据的通道。串行时钟是音频数据进入输入数据缓存的时钟。

主时钟

MCLK/LRCK 的比值必须是整数,见下表。LRCK 的频率等于每个通道输入数据的频率Fs。MCLK 与LRCK 的比值和速度模式是在初始化时通过计算在一个LRCK 周期内MCLK 的周期数以及MCLK 的值来决定的。内置的除法器会产生合适的时钟。下表 列出了一些音频采样频率,以及相应的MCLK 和LRCK频率。请注意这里虽然没有相位的要求,但是LRCK 和MCLK 必须同步。

在总及主虽然仅有相应的女外,								
	LRCK	MCLK(MHz)						
mode	(kHz)	128x	256x	384x	512x	768x	1024x	
	32	-	8.192	12.288	16.384	24.576	32.768	
QSM	44.1	5.6448	11.2896	16.9344	22.5792	33.868	45.158	
	48	6.144	12.288	18.432	24.576	36.864	49.152	
	64	8.192	16.384	24.576	32.768	49.152	-	
DSM	88.2	11.2896	22.5792	33.868	45.1584	-	-	
	96	12.288	24.576	36.864	49.152	-	-	
	128	24.576	32.768	49.152	-	-	-	
SSM	176.4	22.5792	45.1584	-	-	-	-	
	192	24.576	49.152	-	-	-	-	

表: 时钟频率

串行输入时钟

MS5281D 数据格式(I²S)

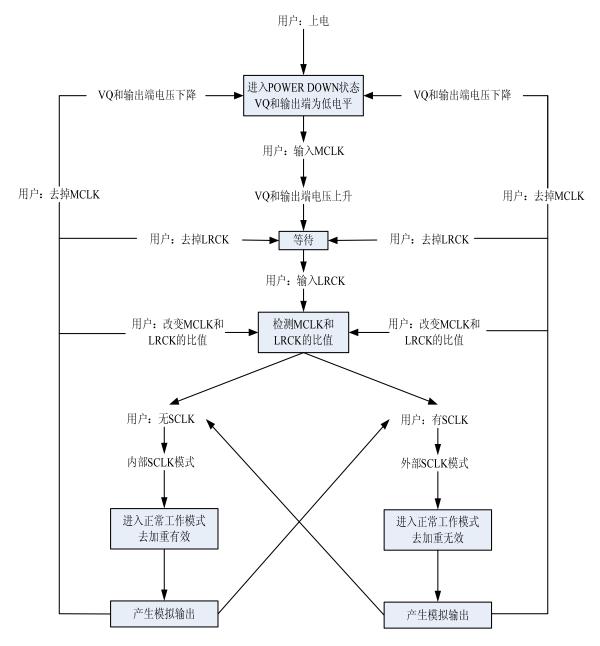
I²S, 最高可到24bit数据数据在SCLK的上升沿有效

初始化和Power-Down

当系统初始上电后就进入 power-down 状态,此时插值滤波器和 ΔΣ 调制器复位,内部参考电压、数模转换器、开关电容滤波器、低通滤波器被关闭,直到系统检测到 MCLK 和 LRCK 时钟。一旦 MCLK 和 LRCK 被检测到,系统就开始计算 MCLK 和 LRCK 的比值,然后给内部参考电压上电,最后才给数模转换器、开关电容滤波器上电,同时输出端输出静态电压 VQ。

输出瞬态控制

MS5281D 采用Pop-guard 技术来减小上电和下电时的瞬态响应。


上电

输出端的直流电平就由 VQ 端提供,当系统初始上电时,VQ 端为低电平。当MCLK 检测到后,VQ 端产生正常的直流电压。当VQ 端接10uF 电容需400ms的启动时间。

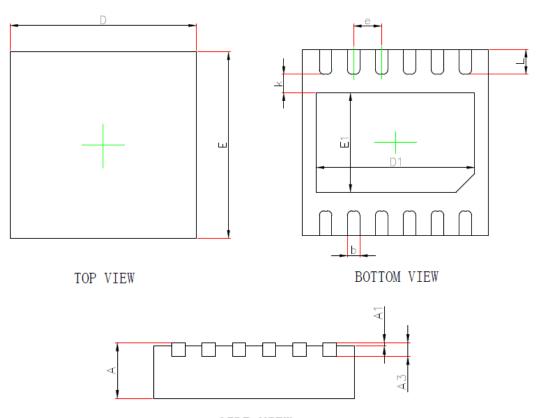
下电

为了防止在下电时输出端产生瞬态脉冲,VQ端外接10uF电容,以保证MCLK在下电前停止,在这段时间内VQ端和输出端逐渐下降到GND。当需要改变时钟频率或采样频率时,最好在LRCK保持10个周期的低电平信号。在时钟变换的过程中,DAC将保持低电平输出。初始化和power down流程如下图所示:

初始化和Power-Down 的顺序图

接地与电源去耦合

MS5281D 地与电源的连接必须非常注意以达到理想的性能。为了得到最好的性能,去耦合与滤波电容必须尽可能的靠近芯片。


典型应用图 R5 | C1 | C1 | -5V | C2 | AN R6 OUTR_N OUTR_P 11 120pF OUTL N 12K BISA 12K C12 10uF R channel L channel R channel GND C8 0.1 OUTR_N R212K OUTR_P OP07 R8 47K GND C9 0.1 VQ FILT C4 430P OUTL_P OUTL_N GND MS5281 L channel SDIN SCLK LRCK OUTR_N R_out_-R_out_+ VDD 6 FILT OUTL P L_out_+ 330 L out -GND MS5281 10n 10n 10n 10n GND

封装外形图

DFN12:

DFNWB3 \times 3-12L(P0.45T0.75/0.85) PACKAGE OUTLINE DIMENSIONS

SIDE VIEW

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203	REF.	0.008	REF.
D	D 2.924		0.115	0.121
E	2.924	3.076	0.115	0.121
D1	2.450	2.650	0.096	0.104
E1	1.500	1.700	0.059	0.067
k	0.200	OMIN.	0.008	BMIN.
b	0.150	0.250	0.006	0.010
е	0.450	TYP.	0.018	TYP.
L	0.324	0.476	0.013	0.019

印章与包装规范

一、印章内容介绍

1. 印章内容介绍

5281D: 产品型号

生产批号:

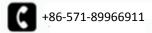
范例: JC7543D

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装说明

型号	封装形式	只/盘	盘/盒	只/盒	盒/箱	只/箱
MS5281D	DFN12	5000	1	5000	8	40000



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电 放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

杭州市滨江区伟业路1号 高新软件园 9号楼 701室

http:// www.relmon.com