

Zbit 128GB eMMC5.1 Datasheet ZBEM128G03RIF1

Rev 1.0

Zbit Proprietary and Confidential

This specification is confidential and is subject to any Zbit handbooks or terms of use provided or made available to the customers. This specification is subject to change or being updated without notice. The customer assumes sale and exclusive responsibility for compliance with safety, environmental, export, trade and other applicable laws and regulations with respect to this specification.

Overview

eMMC 5.1 specification compatibility

- Compatible to eMMC 4.41/4.51/5.0

Bus mode

- Data bus width: 1 bit (default), 4 bits, 8 bits
- Data transfer rate: up to 310MB/s (HS400)
- Timing mode: SDR/DDR/HS200/HS400
- I/F boot frequency: 0 ~ 52 MHz
- I/F clock frequency: 0 ~ 200 MHz

Operating voltage range

- VCC: 2.7 ~ 3.6V
- VCCQ: 1.7 ~ 1.95V or 2.7 ~ 3.6V

Temperature

- Operating temperature: -25 ~ 85°C
- Storage temperature: -45 ~ 85°C

Support feature

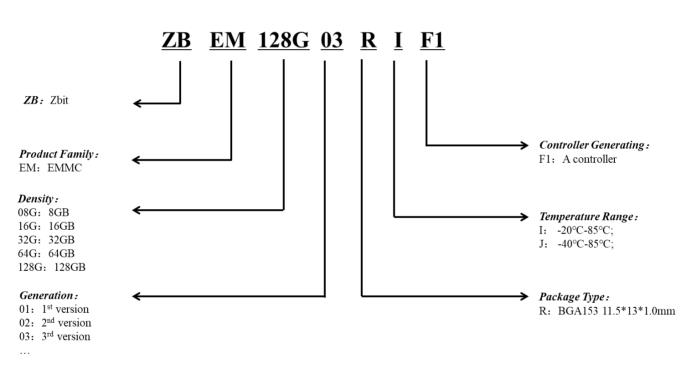
- RPMB Boot partition
- Write protection
- Erase, discard, trim, sanitize
- HPI
- Background operations
- Device health report
- Field firmware update (FFU)
- Sleep / awake
- Packed command
- Support Hardware ECC engine
- Support auto power save mode
- Preventing from sudden-power-off

Revision History

Rev	Date	History
V1.0	2024/2/28	Initial

Zbit eMMC5.1 Datasheet

Contents


Revision History 3 1. Introduction 5 1.1 General Description 5 1.2 Dart Number 5 1.3 Ordering Information 5 2. Park Asignments 6 2.2 Signal Definition 6 2.3 Package Configuration 6 2.3 Package Dimension 8 3.0 Performance 9 3.1 Performance 9 3.2 Power Consumption 9 3.2 Power Consumption 9 3.2 Power Consumption 9 3.2 Step State 10 3.3 Terriformatice 10 3.3.3 Terriformatice 11 3.4 Partition Management 11 3.4 2 Partition Management 11 3.4 2 Partition Management 12 4.1 Penture List 12 4.2 Partition Management 12 4.3 Configuration 15 4.3.1 Boot Operation 15 4.3.2 Boot Operation 16 4.4 TWiteset operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16	Ove	rview	2
1.1 General Description 5 1.2 Part Number 5 1.3 Ordering Information 5 2. Package Configuration 6 2.1 Fin Assignments 6 2.2 Signal Definition 6 2.3 Package Dimension 8 3. Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Active State 10 3.2.2 Standby State 10 3.3 Temprature 10 3.4 Textfrom Size 11 3.4 Partition Management 11 3.4.1 Factory Configuration 11 3.4.1 Partition Management 12 4.1 Architecture and Application 12 4.1 Architecture and Application 15 4.3.2 Derition Management 16 4.4.5 lect Peration 15 4.3.2 Partition Management 16 4.4.1 WW Reset Operation 15 4.3.2 Partition Management 16 4.4.5 lectvic Health Report 16 4.4.5 lectvic Health Report 16 4.4.1 WW Reset Operation 15	Rev	ision History	3
1.2 Part Number 5 1.3 Ordering Information 5 2. Package Configuration 6 2.1 Pin Assignments 6 2.2 Signal Definition 6 2.3 Package Dimension 8 9 3.1 Performance 9 3.1 Performance 9 3.2 Power Consumption 9 3.2 I Active State 90 3.2.2 Standby State 10 3.3 Temprature 10 3.4 Partition Size 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.1 Pactory Configuration 12 4.1 Architecture and Application 12 4.2 Fartition Management 15 4.3.1 Boot Operation 15 4.3.1 Boot Operation 15 4.3.1 Boot Operation 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 18 4.7 Thermal Spec 20 4.8 AV Dever Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Satitize	1.	Intrduction	5
1.2 Part Number 5 1.3 Ordering Information 5 2. Package Configuration 6 2.1 Pin Assignments 6 2.2 Signal Definition 6 2.3 Package Dimension 8 9 3.1 Performance 9 3.1 Performance 9 3.2 Power Consumption 9 3.2 I Active State 90 3.2.2 Standby State 10 3.3 Temprature 10 3.4 Partition Size 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.1 Pactory Configuration 12 4.1 Architecture and Application 12 4.2 Fartition Management 15 4.3.1 Boot Operation 15 4.3.1 Boot Operation 15 4.3.1 Boot Operation 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 18 4.7 Thermal Spec 20 4.8 AV Dever Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Satitize		1.1 General Description	5
1.3 Ordering Information 5 2. Package Configuration 6 2.1 Pin Assignments 6 2.2 Signal Definition 6 2.3 Package Dimension 8 3. Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2 Power Consumption 9 3.2 Power Consumption 9 3.2.2 Standby State 10 3.2.3 Steep State 10 3.3 Temprature 10 3.4 Partition Nanagement 11 3.4.1 Factory Configuration 11 3.4.1 Pactory Configuration 12 4.1 Architecture and Application 12 4.2 Partition Management 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 HW Reset Operation 15 4.3.2 Derition Management 16 4.4 FPU Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FPU) 16 4.6 Field Firmware Update (FPU) 16 <		1	
2. Package Configuration 6 2.1 Pin Assignments 6 2.2 Signal Definition 6 2.3 Package Dimension 8 Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2 Power Consumption 9 3.2 Lactive State 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.3 Temprature 11 3.4 Partition Size 10 3.3 Temprature 11 3.4 Partition Size 11 3.4.1 Pactory Configuration 12 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3.2 Partition Management 15 4.3.2 Partition Management 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 16 4.6.1 EFU Flow 16 4.6.2 EXT_CSD Register for FFU 16 4.7 Thermar			
2.1 Pin Assignments. 6 2.2 Signal Definition 6 2.3 Package Dimension 8 3.1 Performance 9 3.1 Performance 9 3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Netromance 9 3.2.2 Standby State 10 3.2.3 Sleep State 10 3.3.3 Temprature 11 3.4 Partition Size 11 3.4.2 Partition Management 11 3.4.1 Pactory Configuration 12 4.1 Architecture and Application 12 4.3 Command Operation 12 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FPU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Steep (CMD5) 21 4.1 Sequer Erse/Trim 21 4.1 Sequer Erse/Trim 22 5.1 OCR Register <td< td=""><td>2.</td><td></td><td></td></td<>	2.		
2.2 Signal Definition 6 2.3 Package Dimension 8 3. Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.3 Temprature 10 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 3.4.1 Factory Configuration 12 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 EXT_CSD Register for FFU 16 4.6.1 FFU Plow, 16 4.6.1 FFU Plow, 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec. 21 5.1 OCR Register 22 5.2 CDR Register 22 5.3 CSD Register 22 5.4 SDR R			
2.3 Package Dimension 8 3. Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.3 Temprature 10 3.3.3 Temprature 10 3.4 Partition Size 11 3.4 Partition Management 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 12 4.1 Architecture and Application 12 4.3 Command Operation 12 4.3 Command Operation 15 4.3 I Boot Operation 15 4.3 L Boot Operation 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6 Field Pirmware Update (FFU) 16 4.6.1 FFU Flow. 16 4.7 Thermal Spec 20 2.9 Sin CDR Register for FFU 18 4.7 Thermal Spec 21 4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5). 21 4.10 Se			
3. Product Specification 9 3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.2.3 Sleep State 10 3.2.3 Steep State 10 3.3 Temprature 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4.4 Pontcional Description 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.2 Partition Management 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6 I FFU Flow 16 4.6 Z EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.11 Secure Erase/Trim 21 5.1 OCR Register 22 5.2 CDR Register 23 5.4 SDR Register 23 5.5 RCA Register <td></td> <td></td> <td></td>			
3.1 Performance 9 3.2 Power Consumption 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.2.3 Steep State 10 3.3 Temprature 11 3.4 Partition Size 11 3.4 Partition Management 11 3.4.2 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.3 Command Operation 15 4.3.3 Boot Operation 15 4.3.3 Doot Operation 15 4.3.3 Doot Operation 15 4.3.2 Partition Management 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FUE Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.10 Sanitize 22 5.1 OCR Register 22 5.2 CID Register 23 5.4 Extended CSD Register	3		
3.2 Power Consumption 9 3.2.1 Active State 9 3.2.2 Standby State 10 3.2.3 Sleep State 10 3.3 Temprature 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.1 Partition Management 11 3.4.1 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3.1 Boot Operation 15 4.3.2 Dordperation 15 4.3.3 Boot Operation 15 4.3.4 Doot Operation 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.1 FFU Flow 16 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMDS) 21 4.10 Sanitze 21 4.11 Secure Erase/Trim 21 5. Register 22 5. J CCR Register 22<	5.	1	
3.2.1 Active State 9 3.2.2 Standby State 10 3.3 Temprature 10 3.4 Partition Size 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 3.4.2 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.5.2 Partition Management 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.1 FFU Flow 16 4.6.1 FFU Flow 16 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 22 5.1 CCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 DCR Register 23 5.5 RCA Register 34 <td></td> <td></td> <td></td>			
3.2.2 Standby State 10 3.2.3 Steep State 10 3.3 Temprature 11 3.4 Partition Size 11 3.4 Partition Size 11 3.4 Partition Management 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Scatter Erase/Trim 21 5. Register 22 5.1 CCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 24 5.4 E			
3.2.3 Sleep Štate 10 3.3 Temprature 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.10 Sanitize 21 4.11 Scure Erase/Trim 21 5.1 OCR Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 23 5.5 SR CA Register 34 6.5 Electrical Characteristics 34 6.4 Bus Signal Line Load 34			
3.3 Temprature. 11 3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4. Functional Description 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4.4 H/W Reset Operation 16 4.5 Evice Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. 1 OCR Register 22 5. 2 CID Register 22 5. 3 CSR Register 23 5.4 Extended CSD Register 23 5.5 S RCA Register 23 5.4 Extended CSD Register 24 5.5 S RCA Register 34 6. Electrical Characteristics 34			
3.4 Partition Size 11 3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4. Functional Description 12 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 W Reset Operation 16 4.5 Device Health Report 16 4.6.1 FFU Flow 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5.1 OCR Register 22 5.2 CID Register 23 5.4 Extended CSD Register 23 5.4 Extended CSD Register 34 6.5 Bus Signal Line Load 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 <td< td=""><td></td><td></td><td></td></td<>			
3.4.1 Factory Configuration 11 3.4.2 Partition Management 11 4.1 Architecture and Application 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 HW Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.10 Sanitize 21 4.10 Sanitize 21 4.10 Sanitize 21 5.1 OCR Register 22 5.2 CDR Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 23 5.4 Extended CSD Register 24 5.5 SRCA Register 34 6. Electrical Characteristics 34 6. Electric			
3.4.2 Partition Management. 11 4. Functional Description 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.10 Sanitize 22 5.1 OCR Register 22 5.2 CD Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 24 5.5 RCA Register 34 6.6 Electrical Characteristics 34 6.7 Designal Line Load 34 6.8 Signal Line Load 34 6.9 Signal Line Load 34 6.7 Design Guide <td></td> <td></td> <td></td>			
4. Functional Description 12 4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 Extended CSD Register 23 5.4 Extended CSD Register 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Line Load 34 6.4 Bus Timing Specification 35 6.4 Bus Timing Specification 35 <t< td=""><td></td><td></td><td></td></t<>			
4.1 Architecture and Application 12 4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.10 Sanitize 21 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 Extended CSD Register 23 5.4 Extended CSD Register 24 5.5 RCA Register 23 5.4 Extended CSD Register 34 6.6 Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Line Load 34 6.4 Bus Timing Specification 36 6.	4 E		
4.2 Feature List 12 4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management 16 4.4 H/W Reset Operation 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 Extended CSD Register 23 5.4 Extended CSD Register 24 5.5 RCA Register 34 6.6 DSR Register 34 6.6 DSR Register 34 6.7 Dyply Voltage 34 6.3 Bus Signal Line Load 34 6.3 Bus Signal Line Load 34 6.4 Bus Timing Specification 36 7.1 Connect Guide	4. Г		
4.3 Command Operation 15 4.3.1 Boot Operation 15 4.3.2 Partition Management. 16 4.4.1W Reset Operation 16 4.4.1W Reset Operation 16 4.5 Device Health Report. 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow. 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5) 21 4.10 Sanitize. 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 22 5.5 RCA Register 34 5.6 DSR Register 34 6.6 Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 6.4 Bus Timing Specification 36 7.1 Connect G			
4.3.1 Boot Operation 15 4.3.2 Partition Management. 16 4.4 H/W Reset Operation 16 4.4 H/W Reset Operation 16 4.5 Device Health Report. 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 Extended CSD Register 23 5.4 Extended CSD Register 24 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7.1 Connect Guide 37			
4.3.2 Partition Management. 16 4.4 H/W Reset Operation 16 4.5 Device Health Report 16 4.5 Device Health Report 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5.1 OCR Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.4 Extended CSD Register 23 5.4 Extended CSD Register 24 6.4 Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7.1 Connect Guide 37			
4.4 H/W Reset Operation 16 4.5 Device Health Report. 16 4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow. 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5.1 OCR Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 23 5.5 RCA Register 34 6.6 DSR Register 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7.1 Connect Guide 37			
4.5 Device Health Report			
4.6 Field Firmware Update (FFU) 16 4.6.1 FFU Flow. 16 4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5). 21 4.10 Sanitize. 21 4.10 Sanitize. 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 22 5.5 RCA Register 23 5.4 Extended CSD Register 34 5.6 DSR Register 34 6.6 Ilsupply Voltage 34 6.1 Supply Voltage 34 6.3 Bus Signal Line Load 34 6.4 Bus Timing Specification 36 7.1 Connect Guide 37			
4.6.1 FFU Flow			
4.6.2 EXT_CSD Register for FFU 18 4.7 Thermal Spec 20 4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5) 21 4.10 Sanitize. 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 23 5.5 RCA Register 34 5.6 DSR Register 34 6. Electrical Characteristics 34 6.1 Supply Voltage 34 6.3 Bus Signal Line Load 34 6.4 Bus Timing Specification 36 7. Design Guide 37 7.1 Connect Guide 37			
4.7 Thermal Spec 20 4.8 Auto Power Save Mode 21 4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 25 5.5 RCA Register 34 6. Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7. Design Guide 37 7.1 Connect Guide 37			
4.8 Auto Power Save Mode. 21 4.9 Sleep (CMD5) 21 4.10 Sanitize. 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 25 5.5 RCA Register 25 5.6 DSR Register 34 6.6 Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Line Load 35 6.4 Bus Timing Specification 36 7. Design Guide 37 7.1 Connect Guide 37			
4.9 Sleep (CMD5) 21 4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 25 5.5 RCA Register 25 5.6 DSR Register 34 5.6 DSR Register 34 6. Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7. Design Guide 37 7.1 Connect Guide 37			
4.10 Sanitize 21 4.11 Secure Erase/Trim 21 5. Register 22 5.1 OCR Register 22 5.2 CID Register 22 5.3 CSD Register 23 5.4 Extended CSD Register 25 5.5 RCA Register 25 5.6 DSR Register 34 5.6 DSR Register 34 6. Electrical Characteristics 34 6.1 Supply Voltage 34 6.2 Bus Signal Line Load 34 6.3 Bus Signal Levels 35 6.4 Bus Timing Specification 36 7. Design Guide 37 7.1 Connect Guide 37			
4.11 Secure Erase/Trim215. Register225.1 OCR Register225.2 CID Register225.3 CSD Register235.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5. Register225.1 OCR Register225.2 CID Register225.3 CSD Register235.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5.1 OCR Register225.2 CID Register225.3 CSD Register235.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5.2 CID Register225.3 CSD Register235.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37	5. R		
5.3 CSD Register235.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load.346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5.4 Extended CSD Register255.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load.346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5.5 RCA Register345.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
5.6 DSR Register346. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
6. Electrical Characteristics346.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
6.1 Supply Voltage346.2 Bus Signal Line Load346.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37			
6.2 Bus Signal Line Load.346.3 Bus Signal Levels356.4 Bus Timing Specification.367. Design Guide.377.1 Connect Guide37	6. E		
6.3 Bus Signal Levels356.4 Bus Timing Specification367. Design Guide377.1 Connect Guide37		6.1 Supply Voltage	34
6.4 Bus Timing Specification		6.2 Bus Signal Line Load	34
7. Design Guide		6.3 Bus Signal Levels	35
7.1 Connect Guide		6.4 Bus Timing Specification	36
	7.	Design Guide	37
		7.1 Connect Guide	37
		7.2 Component Recommendation	37

1. Intrduction

1.1 General Description

Zbit eMMC device consists of NAND flash and a built-in MMC controller. This product is a high performance and quality embedded storage solution and compatible with JEDEC standard eMMC5.1 specification. Its strong ECC engine significantly improves error correction enabling longer device lifetime and an increased ability to handle higher raw bit error rate. The eMMC controller and software directly manage NAND flash, including ECC, wear-leveling, bad block management, garbage collection and performance optimization, and manage interface protocols. This architecture insulates any revision of NAND flash from the eMMC Host, makes the device easy to integrate and accelerates time-to-market.

1.2 Part Number

1.3 Ordering Information

Please contact Zbit regional sales for the latest product selection and available form factors.

Table 1 Ordering Information

Part Number	Density	Package Type	Package Dimensions	Shipping
ZBEM128G03RIF1	128GB	BGA153	11.5*13*1.0mm ³	Tray

2. Package Configuration

2.1 Pin Assignments

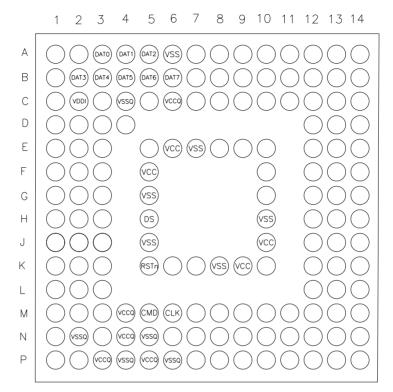


Figure 1. Ball Mapping

2.2 Signal Definition

Signal	Туре	Description
DAT0	I/O	Data I/O: These are bidirectional data signals. The DAT signals operate in push-pull
DAT1	I/O	mode. By default, after power-on or assertion of the RST_n signal, only DAT0 is used for data transfer. The MMC controller can configure a wider data bus for data transfer
DAT2	I/O	either using DAT [3:0] (4-bit mode) or DAT [7:0] (8-bit mode). eMMC includes internal
DAT3	I/O	pull-up resistors for data lines DAT [7:1]. Immediately after entering the 4-bit mode, the device disconnects the internal pull-up resistors on the DAT [3:1] lines. Upon entering
DAT4	I/O	the 8-bit mode, the device disconnects the internal pull-ups on the DAT [7:1] lines.

Signal	Туре	Description
DAT5	I/O	
DAT6	I/O	
DAT7	I/O	
CMD	I/O	Command: This signal is a bidirectional command channel used for command and response transfers. The CMD signal has two bus modes: open-drain mode and push-pull mode. Commands are sent from the MMC host to the device, and responses are sent from the device to the host.
CLK	Ι	Clock: Each cycle of the clock directs a transfer on the command line and on the data line(s). The frequency can vary between the minimum and the maximum clock frequency.
RST_n	I	Reset: The RST_n signal is used by the host for resetting the device, moving the device to the pre-idle state. By default, the RST_n signal is temporarily disabled in the device. The host must set EXT_CSD register byte 162, bits [1:0] to 0x1 to enable this functionality before the host can use it.
DS	0	Data strobe: Generated by the device and used for data output and CRC status response output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output, each cycle of this signal directs two bits transfer (2x) on the data, one bit for the positive edge and the other bit for the negative edge. For CRC status response output, the CRC status is latched on the positive edge only, and is "Don't Care" on the negative edge.
VCC	Р	VCC: NAND interface I/O and NAND Flash power supply
VCCQ	Р	VCCQ: eMMC controller core and eMMC I/F I/O power supply.
VSS	Р	VSS: NAND interface I/O and NAND Flash ground connection.
VSSQ	Р	VSSQ: eMMC controller core and eMMC I/F ground connection.
VDDI Note:	-	Internal voltage node.

Note:

1) I/O = Bi-direction, I = Input, O = Output, P = Power/Analog

2) VSS and VSSQ are connected internally.

2.3 Package Dimension

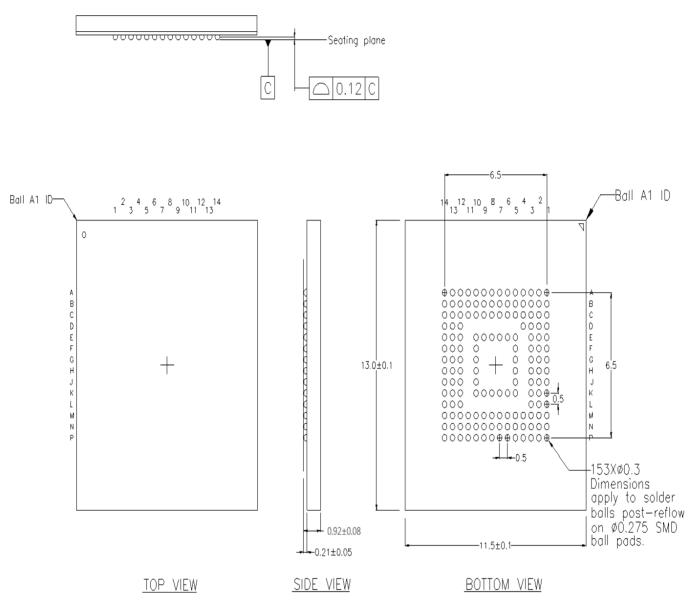


Figure 2. Package Dimension of BGA153

3. Product Specification

3.1 Performance

Mada	I. to an	Sequential Speed (MB/s)		
Mode	Item	128GB		
115 400	Write	251		
HS400	Read	310		
HS200	Write	101		
	Read	170		
DDR52	Write	80		
	Read	83		

Table 3. Performance value in initial stage.

Note:

1. Test condition: Under Zbit internal test board, 512KB data transfer, cache on, without OS overhead.

2. Device will exit initial stage and never return to the initial stage again, when the accumulated data size written into different LBAs is greater than the half of device capacity.

3.2 Power Consumption

3.2.1 Active State

Table 4. Power consumption in active	state
--------------------------------------	-------

Mode	Operation	Item	Power Consumption (mA)		
Wout	operation	Ittin	128GB		
	Read	I _{CC}	117		
HS400	Read	Iccq	65		
113400	Write	Icc	105		
		I _{CCQ}	49		
HS200	Read	Icc	95		
115200	Read	I _{CCQ}	50		

Zbit eMMC5.1 Datasheet

	Write	I _{CC}	85
	Wille	I _{CCQ}	45
DDR52	Read	I _{CC}	70
		Iccq	48
	Write	Icc	68
		Iccq	40

Note:

1. The measurement for max RMS current is the average RMS current consumption over a period of 100ms.

2. Device operation under 3.3V V_{CC} and 1.8V V_{CCQ} .

3.2.2 Standby State

Table 5.	Power	consumption	in	standby state
1 uoie 5.	100001	consumption		Stundoy Stuto

Density	I _{CCQ}	(uA)	I _{CC} (uA)	
	25°C (Typ.)	85°C	25°C (Typ.)	85°C
128GB	100	470	50	

Note:

1. The measurement for max RMS current is the average RMS current consumption over a period of 100ms.

2. In Standby Power mode, VCCQ & VCC power supply is switched on. No data transaction period before entering sleep status, no clock. VCCQ = 1.8V & VCC = 3.3V. Not 100% tested.

3.2.3 Sleep State

	Table 6.	Power	consumption	in	sleep	state
--	----------	-------	-------------	----	-------	-------

Density	I _{CCQ} (I _{CC} (u A)	
Density	25°C(Typ.)	85°C	
128GB	100	470	0

Note:

1. The measurement for max RMS current is the average RMS current consumption over a period of 100ms.

2. In Sleep state, triggered by CMD5, V_{CC} power supply is switched off (V_{CCQ} on). $V_{CCQ} = 1.8V \& V_{CC} = 0V$. Not 100% tested.

3. In auto power saving mode, NAND power V_{CC} cannot be switched off. However, in sleep mode V_{CC} can be switched off. If NAND power V_{CC} is alive, it is same with that of the Standby state.

3.3 Temprature

Symbol	Min (°C)	Max (°C)
Operation	-25	85
Storage	-40	85

3.4 Partition Size

3.4.1 Factory Configuration

The device initially consists of two Boot Partitions, RPMB Partition and User Data Area. Both Boot and RPMB area have fixed size of area and cannot be adjusted.

Density	Boot Partition 1	Boot Partition 2 (KB)	RPMB	User Data Area	
Density	(KB)		(KB)	Percent	Size (MB)
128GB	4096	4096	4096	91%	119,280

Table 8. Partition Size

3.4.2 Partition Management

The User Data Area can be divided into four General Purpose Area Partitions and User Data Area partition with independent address spaces, starting from logical address 0x0000000. Each of the General Purpose Area Partitions and a section of User Data Area partition can be configured as enhanced partition. These partition management operations are one-time programmable.

The enhanced partitions are true SLC mode partition. When customer set some portion as enhanced partitions in User Data Area, these partitions occupy double (MLC)/triple (TLC) size of the original set-up size. If set 1MB for enhanced mode, total 2MB(MLC)/3MB(TLC) user data area is needed to generate 1MB enhanced area.

Table 9. Max Enhanced Partition Size	Table 9.	Max	Enhanced	Partition	Size
--------------------------------------	----------	-----	----------	-----------	------

Density	Max. Enhanced Partition Size
128GB	39,760 MB

4. Functional Description

Zbit eMMC5.1 Datasheet

4.1 Architecture and Application

The eMMC device consists of a single chip eMMC controller and NAND flash memory. The controller interfaces with a host system allowing data to be written to and read from the NAND flash memory, and handles flash management, including logical to physical translation, bad block management, wear leveling and so on. The interface is only 12-bit line, can support 1-bit/4-bit/8-bit data bus flexibly. Therefore, eMMC host can integrate the eMMC easily, access it like a MMC card, and do not care about NAND flash management.

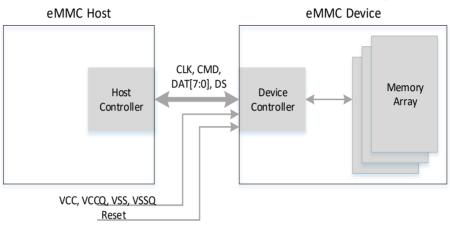


Figure 3. eMMC System Overview

4.2 Feature List

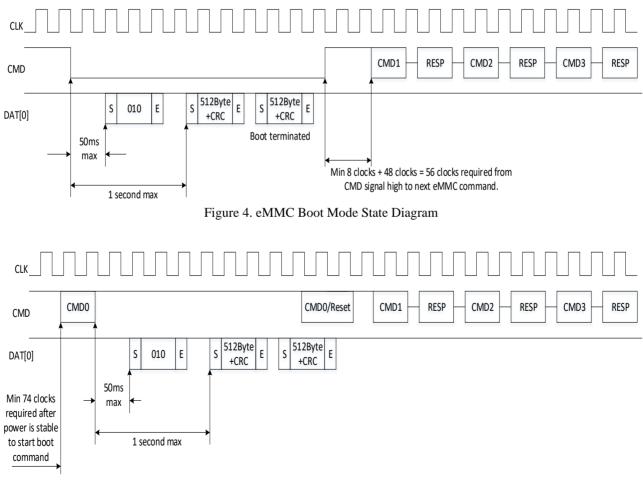
The table below lists which common features following JEDEC standards this device supports, and this section introduces several key features of them. For more detailed information about each feature, please refer to JESD84-B51 standard.

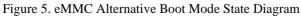
Table 10. St	pported Fe	eature List
--------------	------------	-------------

Feature	Benefit	Support
Legacy 25/52MHz SDR		Y
3.3V VCCQ		Y
1.8V VCCQ		Y
52MHz DDR		Y
Auto Power Save Mode		Y
Background Operation	Better User Experience (low latency)	Y

Feature	Benefit	Support
Boot Partition and Operation		Y
Boot Partition Individual Write Protection		Y
BKOPS Control	Host control on BKOPs	Y
Cache	Better Sequential & Random Writes	Y
Cache Barrier		Y
Cache Flush Report		Y
Command Queuing		Y
Context Management	Performance and/or Reliability	Y
Configurable Drive Strength		Y
Discard	Improved Performance on Full Media	Y
Data Tag	Performance and/or Reliability	Y
Data Reliability Definition	Static Data Protection	Y
Dynamic Capacity		Y
Device Health Report	Vital NAND info	Y
E2MMC		Ν
Enhanced Strobe	Sync Data out, CRC Response and CMD response between Device and Host in HS400	Y
Enhanced Reliable Write		Y
Extended Partition Attribute	Flexibility	Y
Extended Security Protocols		Ν
Field Firmware Update		Y
FW Configuration Register		Y

Feature	Benefit	Support
HPI(High Priority Interrupt)	Control Long Reads/Writes	Y
HW Reset	Robust System Design	Y
HS200	Speed	Y
HS400	Speed	Y
Independent Boot Area Protection		Y
I/O Modification (Overshoot/Undershoot)		Y
Large Sector Size	Potential performance	Ν
Partitioning & Protection	Flexibility	Y
Power Off Notification	Faster Boot; Responsiveness	Y
Packed Command	Reduce Host Overhead	Y
Production State Awareness	Different operation during production	Y
Real Time Clock		Y
Reliable Write		Y
RPMB Throughput Improve	Faster RPMB write throughput	Y
RPMB	Secure Folders	Y
Sanitize	True Wipe	Y
Secure Erase	True Wipe	Y
Secure TRIM	True Wipe	Y
Secure Removal Type		Y
Sleep Mode		Y
Sleep Notification		Y


Zbit eMMC5.1 Datasheet


Feature	Benefit	Support
Secure Write Protection	Secure Write Protect	Y
Thermal Spec.		Y
Trim		Y
VSF Signals		Y
Write Reliability		Y

4.3 Command Operation

4.3.1 Boot Operation

Device supports both boot mode and alternative boot mode. Device supports high speed timing and dual data rate during boot mode.

Zbit eMMC5.1 Datasheet

Table 11. Timing Parameter

	6
Timing Parameter	Value
(1) Boot ACK Time	< 50 ms
(2) Boot Data Time	< 1 s
(3) Initialization Time	< 1 s

4.3.2 Partition Management

The device initially consists of two Boot partitions, RPMB partitions and user data area. The User Data Area can be divided into four General Purpose Area Partitions and User Data Area partition. Each of the General Purpose Area partitions and a section of User Data Area partition can be configured as enhanced partition. For more details, please refer to JESD84-B51 standard.

4.4 H/W Reset Operation

H/W reset operation may be used to reset the device, moving the device to a pre-idle state. For more information, refer to JESD84-B51 standard.

4.5 Device Health Report

Device supports Device Health Report feature which can provide an estimated indication about the device lifetime that is reflected by the averaged wear out of memory Type A and Type B. It can be queried by standard eMMC command for getting Extended CSD structure. Please refer to below and JEDEC Standards for details.

Field	EXT_CSD Slice	Description
DEVICE_LIFE_TIME_EST_TYP_A	268	Lifetime estimation of Type A(SLC) area.
DEVICE_LIFE_TIME_EST_TYP_B	269	Lifetime estimation of Type B(MLC/TLC) area.
PRE_EOL_INFO	267	Indication about device lifetime reflected by average reserved blocks

Table 12. Device Health Report

The device health feature will provide a % of the wear of the device in 10% fragments.

4.6 Field Firmware Update (FFU)

4.6.1 FFU Flow

The feature of Field Firmware Update (FFU) is used to

•

Zbit eMMC5.1 Datasheet

update the device firmware with an open protocol to users. The host can download a new version of the firmware into the eMMC device by this mechanism and whole FFU process can happen without affecting any user/OS data.

- Field Firmware Update is protected from power interruption events. Any power loss interruption will not corrupt the firmware [device may initialize from next power for either the old or the new firmware).
 - Any failure of Field Firmware Update will cause the previous version of firmware to be restored.
- Field Firmware Update supports all bus widths and clocks.
- The binary of Field Firmware Update is protected from invalid firmware Any invalid firmware will cause a Field Firmware Update failure rather than update the device with the wrong firmware.
- The older version of binary cannot be updated with Field Firmware Update To update the device with an older version of firmware, the VSC command, MP Flow, should be issued.

The Zbit eMMC only supports Manual mode (Mode_OPERATION_CODES is not supported). For more details, see as the following chart and register table given below.

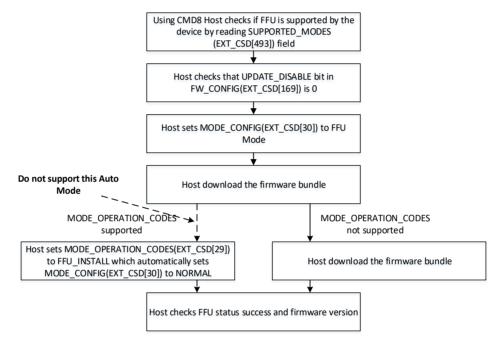


Figure 6. FFU Flow Charter

The Zbit eMMC Field Firmware update command flow:

Table 13. FFU Flow Command	d
----------------------------	---

Operation	Command	Note
Initialize device to transfer mode	CMD0,, CMD7	
Set bus width set frequency		
Set block length to 512B	CMD16 Argu: 0x200	
Get FFU argument	CMD8	

Zbit eMMC5.1 Datasheet

Enter FFU mode	CMD6 Argu: 0x031E0100	
Send Firmware to device	CMD25 Argu: FFU_ARGU	
Stop data transfer	CMD12 Argu: 0x00000000	
Exit FFU mode	CMD6 Argu: 0x031E0000	
HW Reset/power cycle		
Re-initialize device to transfer mode	CMD0, CMD1,, CMD7	
Check if FFU is succeeded	CMD8 Argu: 0x00000000	Check EXT_CSD [26], If FFU_SUCCESS is 0, FFU is succeeded, otherwise FFU is failed.

4.6.2 EXT_CSD Register for FFU

1) SUPPORTED_MODE [493] (Read Only)

Table 14. EXT_CSD [493]

Bit	Field	Supportability
Bit[7:2]	Reserved	-
Bit[1]	VSM	Not support
Bit[0]	FFU	Supported

BIT [0]:

- 0: FFU is not supported by the device.

- 1: FFU is supported by the device.

BIT [1]:

- 0: Vendor specific mode (VSM) is not supported by the device.

- 1: Vendor specific mode is supported by the device

2) FFU_FEATURE [492] (Read Only)

Table 15. EXT_CSD [492]

Bit	Field	Supportability
Bit[7:1]	Reserved	-
Bit[0]	SUPPORTED_MODE_OPERATION_CODES	Not support

- 0: Device does not support MODE_OPERATION_CODES field.

- 1: Device supports MODE_OPERATION_CODES field.

3) FFU_ARG [490-487] (Read Only)

Using this field the device reports to the host which value the host should set as an argument for the read and write commands in FFU mode.

4) FFU_CONFIG [169] (R/W)

Table 16. EXT_CSD [169]

Bit	Field	Supportability
Bit[7:1]	Reserved	-
Bit[0]	Update Disable	Firmware updates enabled (0x0)

BIT[0]:

- 0: Enable update Firmware.

- 1: Disable update Firmware permanently.

5) FFU_STATUS [26] (R/W/E_P)

Using this field the device reports the status of the FFU process.

Table 17. EXT_CSD [26]

Value	Description
0x00	Success
0x01-0x0F	Reserved
0x10	General Error
0x11	Firmware Install Error
0x12	Error in Downloading Firmware
Others	Reserved

6) OPERATION_CODES_TIMEOUT [491] (Read Only)

Maximum timeout for the SWITCH command when setting a value to the MODE_OPERATION_CODES field. The register is set to '0', because the device does not support MODE_OPERATION_CODES.

Zbit eMMC5.1 Datasheet

Table 18. EXT_CSD[491]

Value	Description
0x00	0x0 (Not Defined)
Others	Reserved

7) MODE_OPERATION_CODES [29] (W/E_P)

The host sets the operation to be performed at the selected modes, in case MODE_CONFIGS is set to FFU_MODE, MODE_OPERATION_CODES could have the following values. The Zbit device does not support MODE_OPERATION_CODES.

Table 19. EXT_CSD [29]

Value	Description
0x00	Reserved
0x01	FFU_INSTALL
0x02	FFU_ABORT
Others	Reserved

8) MODE_CONFIG [30] (R/W/E_P)

Using this field the host can change the mode of the device.

Table 20. EXT_CSD [30]

Value	Description
0x00	Normal Mode (To keep the compatibility)
0x01	FFU Mode
0x02	Vendor Specific Mode
Others	Reserved

4.7 Thermal Spec

This device can enter a Low Power mode when the internal temperature is higher than Upper Bound temperature, while it should come back in Normal Power mode when the internal temperature is lower than Lower Bound temperature. Both thresholds are configurable.

Zbit eMMC5.1 Datasheet

This device may enter the Low Power mode by following means (may or may not be applied to all):

- Device is operated at a lower internal clock: MCU internal bus, NAND flash bus.
- Device intends to add latency between NAND flash operations or host operations.
- Device executes a limited parallelism of NAND flash operations, e.g. limit at only one or two NAND flash for parallelism (not recommended to be implemented as the performance impact may be obvious to the host).
- Other internal device level mechanism at lower power.

When the device is in the Low Power mode it is still transparent to the host for all device functions (e.g. HS400 is still supported). However, the host may be aware of it since the device performance drops in the Low Power model.

4.8 Auto Power Save Mode

If the device detects there is no host activities and has no internal operations to do, it shall enter Auto Power Save mode internally after a specific time to reduce power consumption.

- Auto Power Save mode is transparent to the host. The host is not required to send any command to enter or exit Auto Power Save mode.
- Auto Power Save mode ends once the host issues a new command. The device exits Auto Power Save mode automatically with no awareness from the host. However, the 1st new command will be executed after a short latency as the device exits Auto Power Save mode.

4.9 Sleep (CMD5)

The Device support using sleep/awake command (CMD5) to switch between a sleep and a standby state. In the sleep state the power consumption of the device is minimized, and the device reacts only to the commands reset command (CMD0) and awake command (CMD5). The VCC power supply support to be switched off in sleep state to minimize power consumption. For more information, refer to JESD84-B51 standard.

4.10 Sanitize

The Sanitize operation is used to remove data from the device. The use of the Sanitize operation requires the device to physically remove data from the unmapped user address space. The device will continue the sanitize operation, with busy asserted, until one of the following events occurs:

- Sanitize operation is complete
- HPI is used to abort the operation
- Power failure Hardware reset

After the sanitize operation is complete no data should exist in the unmapped host address space.

4.11 Secure Erase/Trim

For backward compatibility reasons, in addition to the standard erase command the eMMC supports the optional Secure Erase command.

- Device may or may not physically erase the data in NAND flash by its own manner.
- Erase /Trim should be issued with Sanitize instead of Secure Erase in the new implementations at system level.

Device provides some general and key information of registers: OCR, CID, CSD, EXT_CSD, RCA and DSR. All of them can be accessed only corresponding commands. For more details, please refer to JESD84-B51 standard.

- The OCR, CID and CSD registers has information of device and content.
- The RCA and DSR registers are for configuring parameters of device.
- The EXT_CSD register contains both device specific information and actual configuration parameters.

Following sections are for describing all register value of eMMC device at its default. And these values here may be updated in later version without notice.

5.1 OCR Register

The 32-bit operation conditions register (OCR) contains: VCC voltage profile of the device, access mode indication, status information bit. The status bit is set when the device finished its power up procedure.

OCR bit	VCCQ Voltage Window	Register Value			
[6:0]	Reserved	000 0000Ь			
[7]	1.70 ~ 1.95	1b			
[14:8]	2.0 ~ 2.6	000 0000Ъ			
[23:15]	2.7 ~ 3.6	1 1111 1111b			
[28:24]	Reserved	0 0000ь			
[30:29]	Access Mode	10b (sector mode)			
[31]	eMMC power up status bit (busy). This bit is set to LOW if the device has not completed the power up routine.				

Tabla	21	OCD	Decistor
I able	21.	OCK	Register

5.2 CID Register

The card identification (CID) register is 128 bits wide. It contains the device identification information used during the card identification phase as required by eMMC protocol. Each device shall have a unique identification number.

Zbit eMMC5.1 Datasheet

Name	Field	Width	CID-slice	CID Value
Manufacturer ID	MID	8	[127:120]	0x5E
Reserved		6	[119:114]	0x00
Device/BGA	CBX	2	[113:112]	0x01
OEM/Application ID	OID	8	[111:104]	0x00
Product name	PNM	48	[103:56]	128GB: 0x5A 42 45 4D 41 47
Product revision	PRV	8	[55:48]	0x30
Product serial number	PSN	32	[47:16]	
Manufacturing date	MDT	8	[15:8]	
CRC7 checksum	CRC	7	[7:1]	
not used, always '1'		1	[0:0]	

5.3 CSD Register

The device Specific Data (CSD) register provides information on how to access the device contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E) can be changed by CMD27. For more information, refer to JESD84-B51 standard.

Table 23	. CSD	Register
----------	-------	----------

Name	Field	Width	Туре	CSD-slice	Value
CSD structure	CSD_STRUCTURE	2	R	[127:126]	0x03
System specification version	SPEC_VERS	4	R	[125:122]	0x04
Reserved	-		R	[121:120]	0x00
Data read access-time 1	TAAC	8	R	[119:112]	0x2F

Name	Field	Width	Туре	CSD-slice	Value
Data read access-time 2 in CLK cycles (NSAC*100)	NSAC	8	R	[111:104]	0x01
Max. bus clock frequency	TRAN_SPEED	8	R	[103:96]	0x32
Device command classes	CCC	12	R	[95:84]	0x8F5
Max. read data block length	READ_BL_LEN	4	R	[83:80]	0x09
Partial blocks for read allowed	READ_BL_PARTIAL	1	R	[79:79]	0x00
Write block misalignment	WRITE_BLK_MISALI GN	1	R	[78:78]	0x00
Read block misalignment	READ_BLK_MISALIG N	1	R	[77:77]	0x00
DSR implemented	DSR_IMP	1	R	[76:76]	0x00
Reserved	-	2	R	[75:74]	0x00
Device size	C_SIZE	12	R	[73:62]	0xFFF
Max. read current @ VDD min	VDD_R_CURR_MIN	3	R	[61:59]	0x07
Max. read current @ VDD max	VDD_R_CURR_MAX	3	R	[58:56]	0x07
Max. write current @ VDD min	VDD_W_CURR_MIN	3	R	[55:53]	0x07
Max. write current @ VDD max	VDD_W_CURR_MAX	3	R	[52:50]	0x07
Device size multiplier	C_SIZE_MULT	3	R	[49:47]	0x07
Erase group size	ERASE_GRP_SIZE	5	R	[46:42]	0x1F
Erase group size multiplier	ERASE_GRP_MULT	5	R	[41:37]	0x1F
Write protect group size	WP_GRP_SIZE	5	R	[36:32]	0x0F
Write protect group enable	WP_GRP_ENABLE	1	R	[31:31]	0x01
Manufacturer default ECC	DEFAULT_ECC	2	R	[30:29]	0x00
Write speed factor	R2W_FACTOR	3	R	[28:26]	0x03

Zbit eMMC5.1 Datasheet

Name	Field	Width	Туре	CSD-slice	Value
Max. write data block length	WRITE_BL_LEN	4	R	[25:22]	0x09
Partial blocks for write allowed	WRITE_BL_PARTIAL	1	R	[21:21]	0x00
Reserved	-	4	R	[20:17]	0x00
Content protection application	CONTENT_PROT_AP P	1	R	[16:16]	0x00
File format group	FILE_FORMAT_GRP	1	R/W	[15:15]	0x00
Copy flag (OTP)	СОРҮ	1	R/W	[14:14]	0x00
Permanent write protection	PERM_WRITE_PROT ECT	1	R/W	[13:13]	0x00
Temporary write protection	TMP_WRITE_PROTE CT	1	R/W/E	[12:12]	0x00
File format	FILE_FORMAT	2	R/W	[11:10]	0x00
ECC code	ECC	2	R/W/E	[9:8]	0x00
CRC	CRC	7	R/W/E	[7:1]	
Not used, always'1'	-	1		[0:0]	

Note:

1. Register type explanations:

(1) R = Read-only.

(2) R/W = One-time programmable and readable.

(3) R/W/E = Multiple writable with value kept after a power cycle, assertion of the RST_n signal, and any CMD0 reset, and readable.

2. Reserved bits should be read as 0.

5.4 Extended CSD Register

The Device-Specific Data (CSD) register provides information on how to access the Device contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E below) can be changed by CMD27. The type of the CSD Registry entries below is coded as follows:

Zbit eMMC5.1 Datasheet

Table 24. Extended CSD Register

Table 24. Extended CSD Register							
Name	Field	Size	Туре	CSD-slice	Value		
Reserved	-	6	TBD	[511:506]	0x00		
Extended Security Command Error	EXT_SECURITY_ ERR	1	R	[505]	0x00		
Supported Command Set	S_CMD_SET	1	R	[504]	0x01		
HPI features	HPI_FEATURES	1	R	[503]	0x01		
Background operation support	BKOPS_SUPPOR T	1	R	[502]	0x01		
Max packed read commands	MAX_PACKED_R EADS	1	R	[501]	0x3F		
Max packed write commands	MAX_PACKED_ WRITES	1	R	[500]	0x3F		
Data Tag Support	DATA_TAG_SUP PORT	1	R	[499]	0x01		
Tag Unit Size	TAG_UNIT_SIZE	1	R	[498]	0x00		
Tag Resource Size	TAG_RES_SIZE	1	R	[497]	0x00		
Context management capabilities	CONTEXT_CAPA BILITIES	1	R	[496]	0x05		
Large Unit size	LARGE_UNIT_SI ZE_M1	1	R	[495]	0x07		
Extended partitions attribute support	EXT_SUPPORT	1	R	[494]	0x03		
Supported modes	SUPPORTED_MO DES	1	R	[493]	0x01		
FFU features	FFU_FEATURES	1	R	[492]	0x00		
Operation codes timeout	OPERATION_CO DE_TIMEOUT	1	R	[491]	0x00		
FFU Argument	FFU_ARG	4	R	[490:487]	0xFFFFFF5F		
Barrier support	BARRIER_SUPPO RT	1	R	[486]	0x00		
Reserved		177	TBD	[485:309]	0x00		
CMD Queuing Support	CMDQ_SUPPORT	1	R	[308]	0x01		
CMD Queuing Depth	CMDQ_DEPTH	1	R	[307]	0x1F		

Name	Field	Size	Tumo	CSD-slice	Value
name	Field	Size	Туре	CSD-slice	value
Reserved		1		[306]	0x00
Number of FW sectors correctly programed	NUMBER_OF_F W_SECTORS_CO RRECTLY_PROG RAMMED	4	R	[305:302]	0x00
Vendor proprietary health report	VENDOR_PROPR IETARY_HEALT H_REPORT	32	R	[301:270]	0x00
Device life time estimation type B	DEVICE_LIFE_TI ME_EST_TYP_B	1	R	[269]	0x01
Device life time estimation type A	DEVICE_LIFE_TI ME_EST_TYP_A	1	R	[268]	0x01
Pre EOL information	PRE_EOL_INFO	1	R	[267]	0x01
Optimal read size	OPTIMAL_READ _SIZE	1	R	[266]	0x40
Optimal write size	OPTIMAL_WRIT E_SIZE	1	R	[265]	0x40
Optimal trim unit size	OPTIMAL_TRIM_ UNIT_SIZE	1	R	[264]	0x07
Device version	DEVICE_VERSIO N	2	R	[263:262]	-
Firmware version	FIRMWARE_VER SION	8	R	[261:254]	-
Power class for 200MHz, DDR at VCC=3.6	PWR_CL_DDR_2 00_360	1	R	[253]	0xDD
Cache size	CACHE_SIZE	4	R	[252:249]	0x00000400
Generic CMD6 timeout	GENERIC_CMD6 _TIME	1	R	[248]	0x64
Power off notification (long) timeout	POWER_OFF_LO NG_TIME	1	R	[247]	0x8C
Background operation status	BKOPS_STATUS	1	R	[246]	0x00
Number of correctly programmed sectors	CORRECTLY_PR G_SECTORS_NU M	4	R	[245:242]	0x00
1st initialization time after partitioning	INI_TIMEOUT_A P	1	R	[241]	0x0A
Cache Flushing Policy	CACHE_FLUSH_ POLICY	1	R	[240]	0x01
Power class for 52MHz, DDR at VCC=3.6V	PWR_CL_DDR_5 2_360	1	R	[239]	0xAA

Name	Field	Size	Туре	CSD-slice	Value
Power class for 52MHz, DDR at VCC=1.95V	PWR_CL_DDR_5 2_195	1	R	[238]	0xDD
Power class for 200MHz at VCCQ=1.95V, VCC=3.6V	PWR_CL_200_195	1	R	[237]	0xDD
Power class for 200MHz at VCCQ=1.3V, VCC=3.6V	PWR_CL_200_130	1	R	[236]	0xDD
Minimum Write Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_ W_8_52	1	R	[235]	0x00
Minimum Read Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_ R_8_52	1	R	[234]	0x00
Reserved		1	TBD	[233]	0x00
TRIM Multiplier	TRIM_MULT	1	R	[232]	0x5
Secure Feature support	SEC_FEATURE_S UPPORT	1	R	[231]	0x55
Secure Erase Multiplier	SEC_ERASE_MU LT	1	R	[230]	0x08
Secure TRIM Multiplier	SEC_TRIM_MUL T	1	R	[229]	0x08
Boot information	BOOT_INF	1	R	[228]	0x07
Reserved		1	TBD	[227]	0x00
Boot partition size	BOOT_SIZE_MU LT	1	R	[226]	0x20
Access size	ACC_SIZE	1	R	[225]	0x07
High-capacity erase unit size	HC_ERASE_GRP_ SIZE	1	R	[224]	0x01
High-capacity erase timeout	ERASE_TIMEOU T_MULT	1	R	[223]	0x5
Reliable write sector count	REL_WR_SEC_C	1	R	[222]	0x01
High-capacity write protect group size	HC_WP_GRP_SIZ E	1	R	[221]	0x10
Sleep current (Vcc)	S_C_VCC	1	R	[220]	0x08
Sleep current (VccQ)	S_C_VCCQ	1	R	[219]	0x08

Name	Field	Size	Туре	CSD-slice	Value
Production state awareness timeout	PRODUCTION_S TATE_AWAREN ESS_TIMEOUT	1	R	[218]	0x0A
Sleep/awake timeout	S_A_TIMEOUT	1	R	[217]	0x17
Sleep Notification Timeout	SLEEP_NOTIFIC ATIN_TIME	1	R	[216]	0x11
Sector Count	SEC_COUNT	4	R	[215:212]	0x0E8F8000
Secure Write Protect Information	SECURE_WP_INF O	1	R	[211]	0x01
Minimum Write Performance for 8bit at 52MHz	MIN_PERF_W_8_ 52	1	R	[210]	0x0A
Minimum Read Performance for 8bit at 52MHz	MIN_PERF_R_8_5 2	1	R	[209]	0x0A
Minimum Write Performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_W_8_ 26_4_52	1	R	[208]	0x0A
Minimum Read Performance for 8bit at 26MHz, for 4bit at 52MHz	MIN_PERF_R_8_2 6_4_52	1	R	[207]	0x0A
Minimum Write Performance for 4bit at 26MHz	MIN_PERF_W_4_ 26	1	R	[206]	0x0A
Minimum Read Performance for 4bit at 26MHz	MIN_PERF_R_4_2 6	1	R	[205]	0x0A
Reserved		1	TBD	[204]	0x00
Power class for 26MHz at 3.6V 1 R	PWR_CL_26_360	1	R	[203]	0x22
Power class for 52MHz at 3.6V 1 R	PWR_CL_52_360	1	R	[202]	0xAA
Power class for 26MHz at 1.95V 1 R	PWR_CL_26_195	1	R	[201]	0x22
Power class for 52MHz at 1.95V 1 R	PWR_CL_52_195	1	R	[200]	0xAA
Partition switching timing	PARTITION_SWI TCH_TIME	1	R	[199]	0x32
Out-of-interrupt busy timing	OUT_OF_INTERR UPT_TIME	1	R	[198]	0x0A
I/O Driver Strength	DRIVER_STREN GTH	1	R	[197]	0x1F
Device type	DEVICE TYPE	1	R	[196]	0x57

Name	Field	Size	Туре	CSD-slice	Value
Reserved		1	TBD	[195]	0x00
CSD STRUCTURE	CSD_STRUCTUR E	1	R	[194]	0x02
Reserved		1	TBD	[193]	0x00
Extended CSD revision	EXT_CSD_REV	1	R	[192]	0x08
Command set	CMD_SET	1	R/W/E_P	[191]	0x00
Reserved		1	TBD	[190]	0x00
Command set revision	CMD_SER_REV	1	R	[189]	0x00
Reserved		1	TBD	[188]	0x00
Power class	POWER_CLASS	1	R/W/E_P	[187]	0x00
Reserved		1	TBD	[186]	0x00
High-speed interface timing	HS_TIMING	1	R/W/E_P	[185]	0x00
Strobe Support	STROBE_SUPPO RT	1	R	[184]	0x01
Bus width mode	BUS_WIDTH	1	W/E_P	[183]	0x00
Reserved		1	TBD	[182]	0x00
Erased memory content	ERASED_MENM_ CONT	1	R	[181]	0x00
Reserved		1	TBD	[180]	0x00
Partition configuration	PARTITION_CON FIG	1	R/W/E & R/W/E_P	[179]	0x00
Boot config protection	BOOT_CONFIG_P ROT	1	 R/W & R/W/C_P	[178]	0x00
Boot bus Conditions	BOOT_BUS_CON DITIONS	1	R/W/E	[177]	0x00
Reserved		1	TBD	[176]	0x00
High-density erase group definition	ERASE_GROUP_ DEF	1	R/W/E_P	[175]	0x00

Name	Name Field		Туре	CSD-slice	Value
		Size	1,100	Sid shee	, mac
Boot write protection status registers	BOOT_WP_STAT US	1	R	[174]	0x00
Boot area write protection register	BOOT_WP	1	R/W & R/W/C_P	[173]	0x00
Reserved		1	TBD	[172]	0x00
User area write protection register	USER_WP	1	R/W, R/W/C_P & R/W/E_P	[171]	0x00
Reserved		1	TBD	[170]	0x00
FW configuration	FW_CONFIG	1	R/W	[169]	0x00
RPMB Size	RPMB_SIZE_MU LT	1	R	[168]	0x20
Write reliability setting register	WR_REL_SET	1	R/W	[167]	0x1F
Write reliability parameter register	WR_REL_PARA M	1	R	[166]	0x15
Start Sanitize operation	SANITIZE_STAR T	1	W/E_P	[165]	0x00
Manually start backgroud operations	BKOPS_START	1	W/E_P	[164]	0x00
Enable background operations handshake	BKOPS_EN	1	R/W & R/W/E	[163]	0x00
H/W reset function	RST_n_FUNCTIO N	1	R/W	[162]	0x00
HPI management	HPI_MGMT	1	R/W/E_P	[161]	0x00
Partitioning Support	PARTITIONING_ SUPPORT	1	R	[160]	0x07
Max Enhanced Area Size	MAX_ENH_SIZE_ MULT	3	R	[159:157]	0x00136A
Partitions attribute	PARTITIONS_AT TRIBUTE	1	R/W	[156]	0x00
Partitioning Setting	PARTITION_SET TING_COMPLET ED	1	R/W	[155]	0x00
General Purpose Partition Size	GP_SIZE_MULT	12	R/W	[154:143]	0x00
Enhanced User Data Area Size	ENH_SIZE_MULT	3	R/W	[142:140]	0x00

Name	Field	Size	Туре	CSD-slice	Value
Enhanced User Data Start Address	ENH_START_AD DR	4	R/W	[139:136]	0x00
Reserved		1	TBD	[135]	0x00
Bad Block Management mode	SEC_BAD_BLK_ MGMNT	1	R/W	[134]	0x00
Production state awareness	PRODUCTION_S TATE_AWAREN ESS	1	R/W/E	[133]	0x00
Package Case Temperature is controlled	TCASE_SUPPOR T	1	W/E_P	[132]	0x00
Periodic Wake-up	PERIODIC_WAK EUP	1	R/W/E	[131]	0x00
Program CID/CSD in DDR mode support	PROGRAM_CID_ CSD_DDR_SUPP ORT	1	R	[130]	0x00
Reserved		2	TBD	[129:128]	0x00
Vendor Specific Fields	VENDOR_SPECIF IC_FIELD	64	vendor or specific	[127:64]	-
Native sector size	USE_NATIVE_SE CTOR	1	R	[63]	0x00
Sector size emulation	NATIVE_SECTO R_SIZE	1	R/W	[62]	0x00
Sector size	DATA_SECTOR_ SIZE	1	R	[61]	0x00
1st initialization after disabling sector size emulation	INI_TIMEOUT_E MU	1	R	[60]	0x00
Class 6 commands control	CLASS_6_CTRL	1	R/W/E_P	[59]	0x00
number of addressed group to be Released	DYNCAP_NEEDE D	1	R	[58]	0x00
Exception events control	EXCEPTION_EVE NTS_CTRL	2	R/W/E_P	[57:56]	0x00
Exception events status	EXCEPTION_EVE NTS_STATUS	2	R	[55:54]	0x00
Extended Partitions Attribute	EXT_PARTITION S_ATTRIBUTE	2	R/W	[53:52]	0x00
Context configuration	CONTEXT_CONF	15	R/W/E_P	[51:37]	0x00
Packed command status	PACKED_COMM AND_STATUS	1	R	[36]	0x00

Zbit eMMC5.1 Datasheet

Name	Field	Size	Туре	CSD-slice	Value
Packed command failure index	PACKED_FAILU RE_INDEX	1	R	[35]	0x00
Power Off Notification	POWER_OFF_NO TIFICATION	1	R/W/E_P	[34]	0x00
Control to turn the Cache ON/OFF	CACHE_CTRL	1	R/W/E_P	[33]	0x00
Flushing of the cache	FLUSH_CACHE	1	W/E_P	[32]	0x00
Control to turn the Barrier ON/OFF	BARRIER_CTRL	1	R/W	[31]	0x00
Mode config	MODE_CONFIG	1	R/W/E_P	[30]	0x00
Mode operation codes	MODE_OPERATI ON_CODES	1	W/E_P	[29]	0x00
Reserved		2	TBD	[28:27]	0x00
FFU status	FFU_STATUS	1	R	[26]	0x00
Pre loading data size	PRE_LOADING_ DATA_SIZE	4	R/W/E_P	[25:22]	0x00
Max pre loading data size	MAX_PRE_LOAD ING_DATA_SIZE	4	R	[21:18]	0x4DA8000
Product state awareness enablement	PRODUCT_STAT E_AWARENESS_ ENABLEMENT	1	R/W/E & R	[17]	0x01
Secure Removal Type	SECURE_REMOV AL_TYPE	1	R/W & R	[16]	0x39
Command Queue Mode Enable	CMDQ_MODE_E N	1	R/W/E_P	[15]	0x00
Reserved		15	TBD	[14:0]	0x00

Note:

1. Register type explanations:

- 1) R = Read-only.
- 2) R/W = One-time programmable and readable.
- 3) R/W/E = Multiple writable with the value kept after a power cycle, assertion of the RST_n signal, and any CMD0 reset, and readable.
- 4) R/W/C_P = Writable after the value is cleared by a power cycle and assertion of the RST_n signal (the value not cleared by CMD0 reset) and readable.
- 5) $R/W/E_P =$ Multiple writable with the value reset after a power cycle, assertion of the RST_n signal, and any CMD0 reset, and readable.
- 6) W/E_P = Multiple writable with the value reset after power cycle, assertion of the RST_n signal, and any CMD0 reset, and not readable.

2. Reserved bits should be read as 0.

The writable 16-bit relative card address (RCA) register carries the card address assigned by the host during the card identification. This address is used for the addressed host-card communication after the card identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all cards into the Stand-by State with CMD7.

5.6 DSR Register

The16-bit DSR register can be optionally used to improve the bus performance for extended operating conditions depending on parameters like bus length, transfer rate or the number of devices. The CSD register carries the information of the DSR register usage. The default value of the DSR register is 0x404.

6. Electrical Characteristics

6.1 Supply Voltage

Table 25. Supply Voltage

Item	Min (V)	Max (V)
VCCQ	1.7	1.95
	2.7	3.6
VCC	2.7	3.6
VSS	-0.5	0.5

6.2 Bus Signal Line Load

The total capacitance C_L of each line of the eMMC bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself and the capacitance C_{DEVICE} of the eMMC connected to this line:

$$C_{\rm L} = C_{\rm HOST} + C_{\rm BUS} + C_{\rm DEVICE}$$

The sum of the host and bus capacitances should be under 20pF.

Parameter	Symbol	Min	Тур.	Max	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7		100	KΩ	to prevent bus floating
Pull-up resistance for DAT0- DAT7	R _{DAT}	10		100	KΩ	to prevent bus floating

Table 26. Bus Signal Line Load

Zbit reserves the right to change specifications without notice.

				ZI	bit eMMC5.1 Datasheet
Internal pull up resistance DAT1-DAT7	R _{int}	10	150	KΩ	to prevent unconnected lines floating
Single Device capacitance	CDEVICE		30	pF	
Maximum signal line inductance			16	nH	fPP <= 52 MHz

Table 27. Capacitance and Resistance for HS400 mode

Parameter	Symbol	Min	Тур	Max	Unit	Remark
Bus signal line capacitance	C_L			13	pF	Single Device
Single Device capacitance	C _{DEVICE}			6	pF	
Pull-down resistance for Data Strobe	R _{Data Strobe}	10		100	KΩ	

6.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

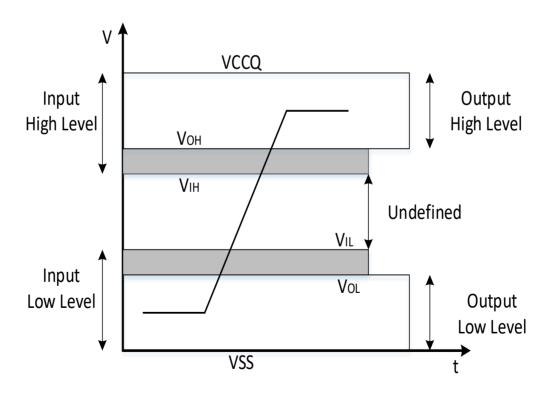


Figure 7. Bus Signal Levels

Zbit eMMC5.1 Datasheet

Table 28. Bus Signal Levels										
Parameter	Symbol	Min (V) Max (V)		Remark						
	Open-drain mode									
Output HIGH voltage	V _{OH}	V _{CCQ} - 0.2	-	(1)						
Output LOW voltage	V _{OL}	-	0.3							
	Push-pu	ll mode (VCCQ:	2.7V - 3.6V)							
Output HIGH voltage	V _{OH}	0.75 * V _{CCQ}	-	IOH = -100uA @ VCCQ min						
Output LOW voltage	V _{OL}	-	0.125 * V _{CCQ}	IOL = 100uA @ VCCQ min						
Input HIGH voltage	V _{IH}	0.625 * V _{CCQ}	$V_{CCQ} + 0.3$	-						
Input LOW voltage	V _{IL}	VSS - 0.3	0.25 * V _{CCQ}	-						
	Push-pull	l mode (VCCQ: 1	1.70V - 1.95V)							
Output HIGH voltage	V _{OH}	VCCQ - 0.45	-	IOH = -2mA						
Output LOW voltage	V _{OL}	-	0.45	IOL = 2mA						
Input HIGH voltage	V _{IH}	0.65 * VCCQ	VCCQ + 0.3	(2)						
Input LOW voltage	V _{IL}	VSS - 0.3	0.35 * VCCQ	(3)						

NOTE:

- 1) Because VOH depends on external resistance value (including outside the package), this value does not apply as device specification. Host is responsible to choose the external pull-up and open drain resistance value to meet VOH Min value.
- 2) 0.7 x VCCQ for MMC4.3 and older revisions.
- 3) 0.3 x VCCQ for MMC4.3 and older revisions.

6.4 Bus Timing Specification

The Zbit eMMC follows JEDEC standard, for timing specification of all bus mode, including High Speed SDR, High Speed DDR, HS200, HS400, please refer to JESD84-B51 standard.

Zbit eMMC5.1 Datasheet

7. Design Guide

7.1 Connect Guide

D

Figure 8. eMMC Connect Guide

7.2 Component Recommendation

Table 29. Component recommendation

Description	Symbol	Min.	Max.	Тур.	Note
Pull-up resistance for CMD (KΩ)	R_CMD	4.7	100	10	Pull-up resistance should be put on CMD line to prevent bus floating.
Pull-up resistance for DAT0~7 (KΩ)	R_DAT	10	100	50	Pull-up resistance should be put on DAT line to prevent bus floating.
Data strobe(DS) (KΩ)	R_DS	10	100	10	Pull-down resistance should be put on DS line to prevent bus floating.
Serial resistance on DS (Ω)	Rs_DS	0	30	0	To reduce overshooting/undershooting Note: If the host uses HS400, we recommend removing this resister for better DS signal.

Description	Symbol	Min.	Max.	Тур.	Note
Pull-up resistance for Rstn (KΩ)	R_Rstn	10	100	50	It is not necessary to put pull-up resistance on Rstn line if host does not use H/W reset. (Extended CSD register [162] = 0b)
Serial resistance on CLK (Ω)	Rs_CLK	0	30	0	To reduce overshooting/undershooting Note: If the host uses HS200/HS400, we recommend removing this resister for better CLK signal.
VCCQ capacitor value (uF)	C1	1	10	2.2	Coupling capacitor should be connected with VCCQ and VSSQ as closely as
	C2	0.1	0.22	0.1	possible.
VCC consistent value (vF)	C3	1	10	2.2	Coupling capacitor should be connected
VCC capacitor value (uF)	C4	0.1	0.22	0.1	with VCC and VSS as closely as possible.
VDDI capacitor value (uF)	C5	0	0.1	0	No capacitor is recommended. Coupling capacitor should be connected with VDDI and VSSQ as closely as possible.
CLK/CMD/DS/DAT [7:0] impedance (Ω)		45	55	50	For impedance match.