
在这个被电子设备深度包裹的时代,从指尖的智能手机到支撑社会运转的工业基站,每个精密电路的"门前",都少不了一位沉默的"过压卫士"——TVS 器件。它的使命,就是抵御电路中那些突如其来的电应力——比如雷击、静电等"能量刺客"的偷袭。当危险来临,这位卫士会瞬间"硬刚"上去,通过自身击穿,将危险的高电压"钳制"在一个安全门槛之内,守护身后那些身价不菲的"核心元件"。

不过,这位传统"过压卫士"性格有点古怪,外部用力变猛(浪涌电流变大)时,本该稳稳钳住电压,结果自己却"稍显吃力"(钳位电压升高),就可能会让身后的电路"受内伤"。正因如此,一位内功强劲、更沉稳的"电压管家"—— TSP(Transient Surge Protector)登场了。

[WAYON]

Transient Surge Protector

如果说传统 TVS 是一位勇猛但略显毛躁的"门卫",那 **TSP** 则是一位深谙"以柔克刚"之道的"内力高手"。面对同样凶悍的浪涌冲击,它不再与之硬碰硬,而是通过独特的平缓钳位技术,如太极般将冲击力稳稳化解、疏导,将电压牢牢"锁定"在一个宽阔且安全的平台上,真正做到"任他风浪起,稳坐钓鱼台"。

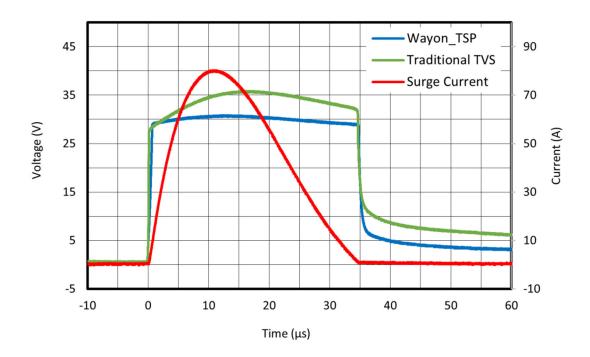


图 1: 8/20 浪涌测试波形

这位"电压管家"的内功究竟深厚在何处?

一切答案,

都藏在下面这组核心参数的对比之中:

WAYON TSP

动态导通电阻和钳位电压

评判一个保护器件的性能, **动态导通电阻**是关键指标,它直接决定了器件在"实战"中的钳位表现。

传统 TVS 虽然经历了几代升级,从较早的 PN 结到单向骤回技术,从宽基区到窄基区、从单一浓度基区到多层次阶梯浓度基区,经过多轮优化,其钳位电压仍会随浪涌电流增加而上升,被保护器件的压力会随之变大。

TSP 产品凭借其先进的半导体工艺,实现了极低的动态电阻,这使得它的钳位电压在不同的冲击电流下几乎维持一条直线,展现出远超传统方案的稳定性与可靠性。

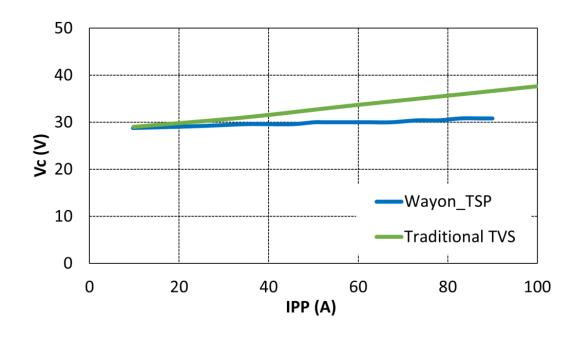


图 2: IPP 与 VC 对比

TSP 的保护性能,可以概括为三个字: "快准稳"。其接近零的导通电阻,如同为浪涌电流开辟了一条毫无阻碍的"宽广大道",确保了钳位电压在事件全程都精确且平缓。

2

WAYON TSP

温度特性

工程师们常会担忧:高温环境下,我的电路保护还可靠吗?

传统 TVS 给出的答案并不理想——其钳位电压会随温度升高而上升,保护窗口在高温下明显收窄。

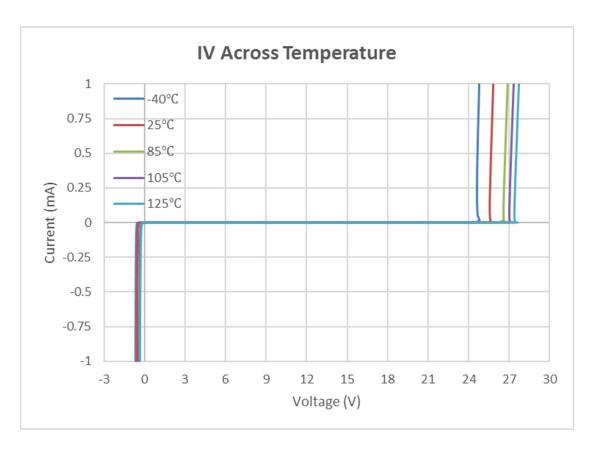


图 3: 不同温度下 TVS 的 IV 特性曲线

TSP 的钳位电压在全工作温度范围(-40℃~125℃)内几乎保持一条直线,如下图所示。

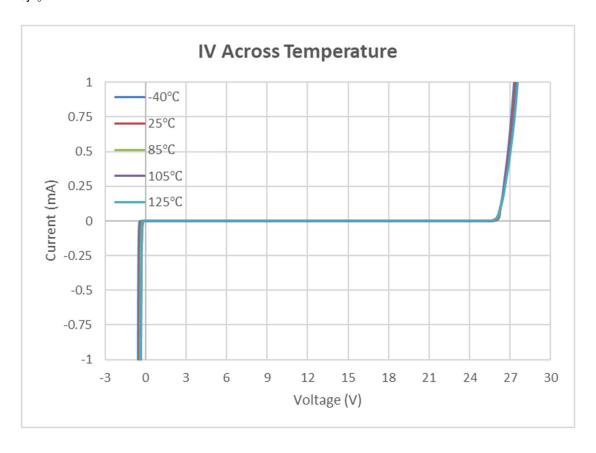


图 4: 不同温度下 TSP 的 IV 特性曲线

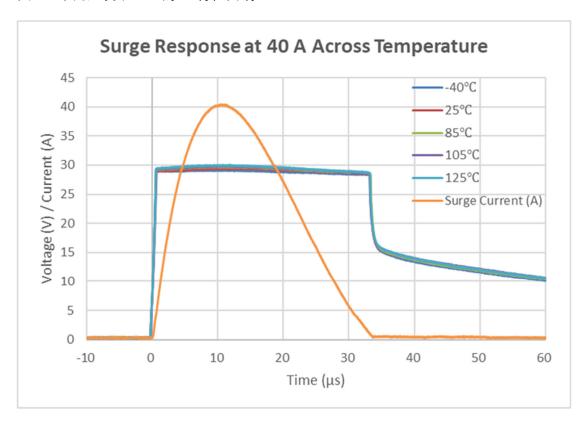


图 5: 不同温度下 TSP 在 40A 下的浪涌波形

TSP 这份在任何恶劣环境下都"处变不惊"的淡定,正是保证 USB-PD 快充口、精密传感器等设备稳定工作的关键。

3

WAYON TSP

高可靠性

TSP 量产品现已通过**车规可靠性测试**,覆盖温度、湿度、机械应力、电气特性等全方位验证。

"

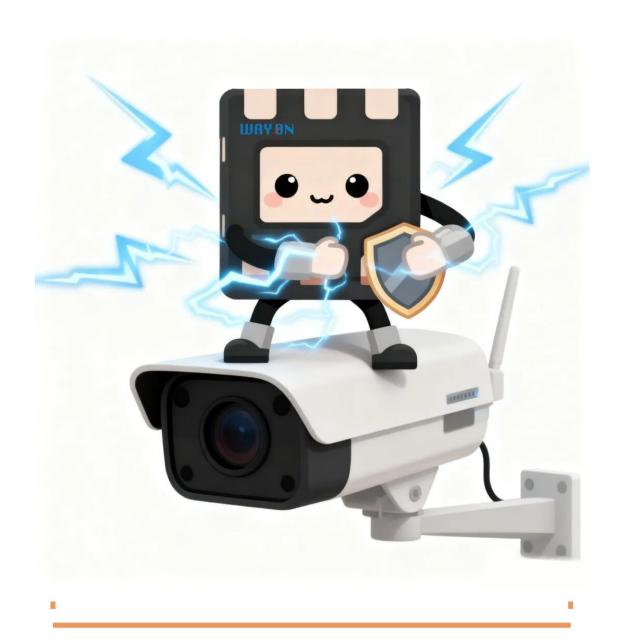
核心优势

WAYON TSP

极低的动态导通电阻

宽电流范围内近乎平直的精准钳位

快速响应


说了这么多 TSP 的"内功心法",

它在真实世界里究竟表现如何?

应用案例来啦:

为高浪涌环境下的脆弱 DCDC 提供精确保护

案例一

在**安防产品、户外设备**等应用中,供电接口常面临高浪涌威胁。而后级 DCDC 的实际击穿电压存在波动,若保护器件的残压过高或 DCDC 耐压波动,极易导致 DCDC 损坏。

我们可以将 **TSP 和 TVS 并联**, TVS 作为第一道防线, 快速响应并吸收大部分浪涌能量。之后 TSP 利用其平缓的钳位特性, 将残压牢牢稳定在一个安全且可控的范围内。

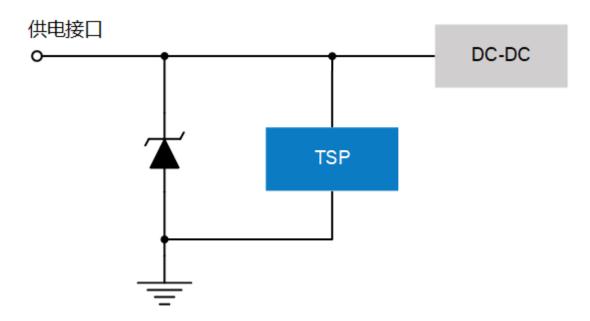


图 6: 供电口防护示意图

该组合的显著优势在于, **它能同时对正、负向浪涌进行有效钳位**,实现了1+1>2的精准保护效果。

破局笔电高压保护困境,实现稳定低残压防护

案例二

当您的**笔电 Type-C 接口**采用 **20V VBUS** 供电时,是否担忧过后端 charger 的耐压余量?传统保护方案往往无法同时满足"高工作电压"与"低钳位电压"的苛刻要求。

我们的 TSP 正是这一设计痛点的最佳答案。它不仅能从容应对 20V 的稳态工作电压, 更能凭借其**极低的动态导通电阻**,在浪涌发生时将峰值电压精准压制在安全阈值内。

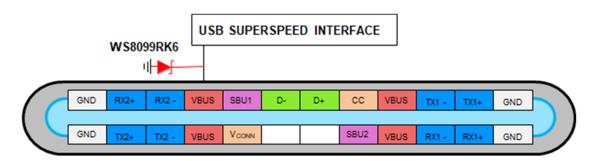


图 7: Type-C 口防护示意图

更重要的是,我们的 TSP 其工作电压可依据客户平台的实际需求进行**定制调整**,为追求高可靠性与高功率密度的各类设计提供了至关重要的灵活保障。

超越瞬时保护,平抑手机负载波动

案例三

在**手机相机连拍、游戏加载**等大负载场景中,系统供电总线会因电流突变而产生电压 波动。

TSP 凭借其独特的控制架构,在此类短时间持续电压波动中展现出卓越的**稳压能力**。 它能够动态响应并抑制供电总线上的电压扰动,在毫秒至秒级的时间尺度内将波动的 电压精准钳位至稳定状态,有效避免因电压异常导致的系统卡顿、数据丢失或部件损伤等情况。

产品选型表

WAYON TSP

Part No.	VRWM (V)	VBR(1mA)	IPP(A)TYP	Vc(V)TYP	ESD	PACKAGE
WS8099KK6	5	7.5	80	9.5	30KV	DFN2020-6L
WS8099RK6	22	26.2	60	27.6	30KV	DFN2020-6L
WS8019NK6	33	37.0	45	38.2	30KV	DFN2020-6L
WS80996K6	58	74.5	25	78	30KV	DFN2020-6L

TSP 目前工作电压覆盖 5~58V

TSP 芯片具有接近理想状况的 ESD 和 EOS 保护特性,可以广泛应用于 USB/雷电接口、医疗设备、I0-Link 接口、工业传感器、可编程逻辑控制器(PLC)和以太网供电(PoE)等领域,可为系统提供更全面以及更可靠的保护。

卓越的保护方案不止于此,您的下一个挑战,就是我们探索的下一个焦点